
biogeographic patterns. Their study, too, is

centered on a large database, but in this case it

is entirely of living organisms, the marine

bivalves. Over 28,000 records of bivalve gen-

era and subgenera from 322 locations around

the world have now been compiled by these

authors, giving a global record of some 854

genera and subgenera and 5132 species. No

fossils are included in the database, but

because bivalves have a good fossil record, it is

possible to estimate accurately the age of ori-

gin of almost all extant genera. It is then possi-

ble to plot a backward survivorship curve (8)

for each of the 27 global bivalve provinces (9). 

On the basis of these curves, Krug et al. find

that origination rates of marine bivalves in-

creased significantly almost everywhere im-

mediately after the K-Pg mass extinction event.

The highest K-Pg origination rates all occurred

in tropical and warm-temperate regions. A dis-

tinct pulse of bivalve diversification in the early

Cenozoic was concentrated mainly in tropical

and subtropical regions (see the figure). 

The steepest part of the global backward

survivorship curve for bivalves lies between 65

and 50 million years ago, pointing to a major

biodiversification event in the Paleogene (65 to

23 million years ago) that is perhaps not yet

captured in Alroy et al.’s database (5, 7). The

jury is still out on what may have caused this

event. But we should not lose sight of the fact

that the steep rise to prominence of many mod-

ern floral and faunal groups in the Cenozoic

may bear no simple relationship to climate or

any other type of environmental change (10, 11).
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W
e live life in the network. We check

our e-mails regularly, make mobile

phone calls from almost any loca-

tion, swipe transit cards to use public trans-

portation, and make purchases with credit

cards. Our movements in public places may be

captured by video cameras, and our medical

records stored as digital files. We may post blog

entries accessible to anyone, or maintain friend-

ships through online social networks. Each of

these transactions leaves digital traces that can

be compiled into comprehensive pictures of

both individual and group behavior, with the

potential to transform our understanding of our

lives, organizations, and societies. 

The capacity to collect and analyze massive

amounts of data has transformed such fields as

biology and physics. But the emergence of a

data-driven “computational social science” has

been much slower. Leading journals in eco-

nomics, sociology, and political science show

little evidence of this field. But computational

social science is occurring—in Internet compa-

nies such as Google and Yahoo, and in govern-

ment agencies such as the U.S. National Secur-

ity Agency. Computational social science could

become the exclusive domain of private com-

panies and government agencies. Alternatively,

there might emerge a privileged set of aca-

demic researchers presiding over private data

from which they produce papers that cannot be

critiqued or replicated. Neither scenario will

serve the long-term public interest of accumu-

lating, verifying, and disseminating knowledge.

What value might a computational social

science—based in an open academic environ-

ment—offer society, by enhancing understand-

ing of individuals and collectives? What are the

A field is emerging that leverages the 

capacity to collect and analyze data at a 

scale that may reveal patterns of individual

and group behaviors.
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obstacles that prevent the emergence of a com-

putational social science?

To date, research on human interactions has

relied mainly on one-time, self-reported data

on relationships. New technologies, such as

video surveillance (1), e-mail, and “smart”

name badges, offer a moment-by-moment pic-

ture of interactions over extended periods of

time, providing information about both the

structure and content of relationships. For

example, group interactions could be examined

through e-mail data, and questions about the

temporal dynamics of human communications

could be addressed: Do work groups reach a

stasis with little change, or do they dramatically

change over time (2)? What interaction patterns

predict highly productive groups and individu-

als? Can the diversity of news and content we

receive predict our power or performance (3)?

Face-to-face group interactions could be

assessed over time with “sociometers.” Such

electronic devices could be worn to capture

physical proximity, location, movement, and

other facets of individual behavior and collec-

tive interactions. The data could raise interest-

ing questions about, for example, patterns of

proximity and communication within an

organization, and flow patterns associated with

high individual and group performance (4).

We can also learn what a “macro” social

network of society looks like (5), and how it

evolves over time. Phone companies have

records of call patterns among their custom-

ers extending over multiple years, and e-

Commerce portals such as Google and Yahoo

collect instant messaging data on global com-

munication. Do these data paint a compre-

hensive picture of societal-level communica-

tion patterns? In what ways do these interac-

tions affect economic productivity or public

health? It is also increasingly easy to track the

movements of people (6). Mobile phones

allow the large-scale tracing of people’s

movements and physical proximities over

time (7). Such data may provide useful epi-

demiological insights: How might a patho-

gen, such as influenza, driven by physical

proximity, spread through a population? 

The Internet offers an entirely different

channel for understanding what people are say-

ing, and how they are connecting (8). Consider,

for example, this past political season, tracing

the spread of arguments, rumors, or positions

about political and other issues in the blogo-

sphere (9), as well as the behavior of individu-

als “surfing” the Internet (10), where the con-

cerns of an electorate become visible in the

searches they conduct. Virtual worlds, which

by their nature capture a complete record of

individual behavior, offer ample opportunities

for research—experimentation that would

otherwise be impossible or unacceptable (11).

Similarly, social network Web sites offer a

unique opportunity to understand the impact of

a person’s position in the network on everything

from their tastes to their moods to their health

(12), whereas Natural Language Processing

offers increased capacity to organize and ana-

lyze the vast amounts of text from the Internet

and other sources (13). 

In short, a computational social science is

emerging that leverages the capacity to collect

and analyze data with an unprecedented

breadth and depth and scale. Substantial barri-

ers, however, might limit progress. Existing

ways of conceiving human behavior were

developed without access to terabytes of data

describing minute-by-minute interactions and

locations of entire populations of individuals.

For example, what does existing sociological

network theory, built mostly on a foundation of

one-time “snapshot” data, typically with only

dozens of people, tell us about massively lon-

gitudinal data sets of millions of people,

including location, financial transactions,

and communications? These vast, emerging

data sets on how people interact surely offer

qualitatively new perspectives on collective

human behavior, but our current paradigms

may not be receptive. 

There are also enormous institutional obsta-

cles to advancing a computational social sci-

ence. In terms of approach, the subjects of

inquiry in physics and biology present different

challenges to observation and intervention.

Quarks and cells neither mind when we dis-

cover their secrets nor protest if we alter their

environments during the discovery process. As

for infrastructure, the leap from social science

to a computational social science is larger than

from biology to a computational biology,

largely due to the requirements of distributed

monitoring, permission seeking, and encryp-

tion. There are fewer resources available in the

social sciences, and even the physical (and

administrative) distance between social science

departments and engineering or computer sci-

ence departments tends to be greater than for

the other sciences. 

Perhaps the thorniest challenges exist on the

data side, with respect to access and privacy.

Much of these data are proprietary (e.g., mobile

phone and financial transactional information).

The debacle following AOL’s public release of

“anonymized” search records of many of its

customers highlights the potential risk to indi-

viduals and corporations in the sharing of per-

sonal data by private companies (14). Robust

models of collaboration and data sharing

between industry and academia are needed to

facilitate research and safeguard consumer pri-

vacy and provide liability protection for corpo-

rations. More generally, properly managing pri-

vacy issues is essential. As the recent U.S.

National Research Council’s report on geo-

graphical information system data highlights, it

is often possible to pull individual profiles out

of even carefully anonymized data (15). Last

year, the U.S. National Institutes of Health and

the Wellcome Trust abruptly removed a num-

ber of genetic databases from online access

(16). These databases were seemingly anony-

mized, simply reporting the aggregate fre-

quency of particular genetic markers. How-

ever, research revealed the potential for de-

anonymization, based on the statistical power

of the sheer quantity of data collected from

each individual in the database (17).

Because a single dramatic incident involv-

ing a breach of privacy could produce rules

and statutes that stifle the nascent field of com-

putational social science, a self-regulatory

regime of procedures, technologies, and rules

is needed that reduces this risk but preserves

research potential. As a cornerstone of such a

self-regulatory regime, U.S. Institutional Re-

view Boards (IRBs) must increase their techni-

cal knowledge to understand the potential for

intrusion and individual harm because new

possibilities do not fit their current paradigms

for harm. Many IRBs would be poorly equip-

ped to evaluate the possibility that complex

data could be de-anonymized. Further, it may

be necessary for IRBs to oversee the creation

of a secure, centralized data infrastructure.

Currently, existing data sets are scattered

among many groups, with uneven skills and

understanding of data security and widely

varying protocols. Researchers themselves

must develop technologies that protect privacy

while preserving data essential for research.

These systems, in turn, may prove useful for

industry in managing customer privacy and

data security (18). 

Finally, the emergence of a computational

social science shares with other nascent inter-

disciplinary fields (e.g., sustainability science)

the need to develop a paradigm for training

new scholars. Tenure committees and editorial

boards need to understand and reward the effort

to publish across disciplines. Initially, computa-

tional social science needs to be the work of

teams of social and computer scientists. In the

long run, the question will be whether acade-

mia should nurture computational social scien-

tists, or teams of computationally literate social

scientists and socially literate computer scien-

tists. The emergence of cognitive science offers

a powerful model for the development of

a computational social science. Cognitive sci-

ence has involved fields ranging from neuro-

biology to philosophy to computer science. It

has attracted the investment of substantial

Published by AAAS



resources to create a common field, and created

enormous progress for public good in the last

generation. We would argue that a computa-

tional social science has a similar potential, and

is worthy of similar investments.
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M
olecules known as signal transducers

and activators of transcription (STATs)

regulate gene expression in the

nucleus in response to cell surface receptors

that are activated by cytokines. On page 793 of

this issue, Wegrzyn et al. (1) reveal that the

isoform Stat3 also functions in another

organelle—the mitochondria—to control cell

respiration and metabolism. This finding not

only reveals a new role for Stat3, but implies its

potential role in linking cellular signaling path-

ways to energy production. 

Stat3 proteins represent the canonical medi-

ators of signals elicited by type I cytokine

receptors at the cell surface (2). For instance,

the adipocytokine leptin activates Stat3 in

hypothalamic neurons to promote the expres-

sion of the catabolic neuropeptide, propio-

melanocortin, thereby regulating whole-body

energy intake and metabolism (3). The binding

of a cytokine to its receptor triggers an intra-

cellular cascade of events, beginning with the

activation of an enzyme, Jak kinase, which is

associated with the receptor’s cytoplasmic

domain. The activated receptor-Jak complex

then recruits and phosphorylates a tyrosine

residue in cognate STAT proteins. This modifi-

cation causes the STAT protein to relocate to

the nucleus, where, as a dimer, it binds to spe-

cific DNA sequences and promotes gene

expression (see the figure). Thus, the well-

understood job of STAT proteins is to transmit

a transcriptional signal from the cell surface to

the nucleus. The phosphorylation of some

STAT proteins on a specific serine residue may

also contribute to their regulation (2). 

Wegrzyn et al. have now identified another

crucial role for Stat3, the isoform that responds

to cytokines of the interleukin-6 and -10 fami-

lies (including leptin). These cytokines act in

the immune system and many other organ sys-

tems to regulate diverse cellular processes,

including differentiation, proliferation, and

apoptosis (2). Noting that GRIM-19, a mito-

chondrial protein, interacts with Stat3 and

inhibits Stat3 transcriptional activity (4–7), the

authors investigated the potential mitochondrial

location of Stat3, revealing that a fraction of

cellular Stat3 resides within the mitochondria

of mouse myocytes and hepatocytes. Here,

Stat3 associates with GRIM-19–containing

A cellular signaling pathway that responds

to cytokines may coordinately control energy

production by mitochondria.
Moonlighting in Mitochondria
Martin G. Myers Jr.

CELL BIOLOGY

Division of Metabolism, Endocrinology and Diabetes,
Department of Internal Medicine, and Department of
Molecular and Integrative Physiology, University of Michigan,
Ann Arbor, MI 48109, USA. E-mail: mgmyers@umich.edu

Complex II

Complex I

Cytokine

Cytokine

receptor

P

JAK

Stat3

Stat3

PTyr

PTyr

PTyr

P

PSer

Other

stimuli

Serine

kinases

?

?

Stat3

PSer

Stat3

Stat3

Stat3

Gene expressionOxidative 

phosphorylation

Dual deployment. The activation of a cytokine receptor at the cell surface promotes the tyrosine phospho-
rylation (Tyr-P) of Stat3, which  dimerizes and moves to the nucleus to control gene expression. Serine phos-
phorylation (Ser-P) of Stat3 appears to be required for its action in mitochondria, where it promotes
increased oxidative phosphorylation. Because many stimuli promote the serine phosphorylation of Stat3,
many signaling pathways could regulate mitochondrial respiration via Stat3.
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