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Exercise contagion in a global social network
Sinan Aral1 & Christos Nicolaides1

We leveraged exogenous variation in weather patterns across geographies to identify social

contagion in exercise behaviours across a global social network. We estimated these

contagion effects by combining daily global weather data, which creates exogenous variation

in running among friends, with data on the network ties and daily exercise patterns of B1.1M

individuals who ran over 350M km in a global social network over 5 years. Here we show that

exercise is socially contagious and that its contagiousness varies with the relative activity of

and gender relationships between friends. Less active runners influence more active runners,

but not the reverse. Both men and women influence men, while only women influence other

women. While the Embeddedness and Structural Diversity theories of social contagion

explain the influence effects we observe, the Complex Contagion theory does not. These

results suggest interventions that account for social contagion will spread behaviour change

more effectively.
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D
isciplines as diverse as economics1, sociology2, medicine3,
computer science4, political science5 and physics6 have
recently become interested in the interdependence of

behaviours across the human social network. In particular,
scientists have begun to ask whether our health7 and other
behaviours8 are contagious, in that our decisions and actions
affect the decisions and actions of our peers. If behavioural
contagions exist, understanding how, when and to what extent
they manifest in different behaviours will enable us to transition
from independent intervention strategies to more effective
interdependent interventions that incorporate individuals’ social
contexts into their treatments9. Although this line of inquiry has
tremendous potential to improve social, economic and business
policy, its scientific advancement has been hindered by three
distinct empirical challenges.

First, although correlations in the behaviours and outcomes of
socially connected individuals are ubiquitous, causal social
influence effects are harder to identify. Early work demonstrated
correlations in human behaviour in network space and time3,7,8,
signaling the possibility that health behaviours cascade through
social interactions. But, subsequent investigations revealed
multiple statistical challenges to identifying causal peer effects
in networks, including homophily (the tendency for individuals
to choose similar friends10,11), confounding effects (the tendency
for connected individuals to be exposed to the same external
stimuli), simultaneity (the tendency for connected individuals to
co-influence each other) and other factors12–14. Recent work
has addressed some of these challenges by developing new
observational10 and experimental15–19 techniques. However,
observational techniques struggle to overcome the confounding
effects of unobservable factors20, while experimental studies,
which provide more robust causal inference, are complex, difficult
to implement and therefore more rare. To scale up scientific
investigations of peer effects, we advocate for the exploitation of
naturally occurring (rather than experimentally created) random
variation across network ties to identify causal social influence.
The generalization of such methods to the study of peer effects
could not only identify causal peer influence across behaviours
but also extend the effectiveness of causal inference in networked
studies beyond strictly experimental settings.

Second, studies of social contagion currently suffer from
substantial measurement error. On the one hand, survey-based
studies, which elicit data about meaningful offline health
behaviours such as smoking, obesity or happiness, rely on
infrequent and often inaccurate21,22 self-reports of behaviours
and outcomes3,7,8. On the other hand, experiments, which are
easier to conduct digitally, are almost exclusively applied to less
tangible and less potentially meaningful online behaviours, such
as the adoption and use of social applications17,18, clicking on
social advertisements23, the virality of internet memes24 or the
use of positive or negative emotive language in digital status
updates25. These behaviours may not proxy well for the more
tangible, costly, offline health behaviours that meaningfully
impact public health. Between these two extremes lies an
important alternative approach that aims to provide precise,
granular measurement, not of digital behaviours such as clicks or
shares but of more consequential, offline health behaviours, such
as diet or exercise. The coming wave of quantified self and fitness
tracking data, of the type we employ here, collected by wearable
devices that record detailed exercise activities time stamped to the
second, will likely advance and accelerate the effectiveness of this
alternative approach dramatically.

Third, current causal social influence research has limited
generalizability. While field experiments have taught us much
about the foundations of population-scale peer effects and their
consequences, they constrain us to focus on behaviours we can

easily randomize, such as the receipt of digital notifications17–19

or the social information contained in display advertisements23,
limiting our scope of inquiry to a small set of specific, narrow
conditions and behaviours. Increased experimental control in the
laboratory, on the other hand, enables tests of conditions that
are difficult to manipulate in the real world, such as the
network structure in which individuals are embedded16,26. But,
it is unknown whether these results generalize because the
relationships that individuals are randomly assigned to in the
laboratory are typically artificial. If the study of social influence is
to impact public health, we must overcome these limitations
by examining generalized peer effects, such as the effect of
individuals’ overall exercise behaviours on their friends, in data
on actual exercise behaviours and real relationships interacting in
their natural states. It is in precisely these settings that
experimentation is hardest.

Our analysis of the precisely recorded daily exercise patterns of
over a million people who ran over 350 million (M) km in a
global social network of runners over 5 years showed that exercise
is socially contagious and that its contagiousness varies with the
relative activity levels of and gender relationships between friends.
Less active runners influence more active runners, while the
reverse is not true. Both men and women influence men, while
only women influence other women. While the Embeddedness
and Structural Diversity theories of social contagion explain the
influence effects we observed, evidence for the Complex
Contagion theory is mixed.

Results
Naive contagion estimates. We estimated social contagion in the
exercise behaviours of runners worldwide in a data set that
precisely records the geographic locations, social network ties
and daily running patterns of B1.1M individuals, who ran
B359M km in a global social network of runners over 5 years.
Following Aral12, we define the magnitude of peer effects or
contagion in exercise behaviour (which we also refer to as social
influence, social contagion, behavioural contagion and network
contagion) as the degree to which the exercise behaviours of one’s
peers change the likelihood that or extent to which one engages in
those behaviours. The data contain the daily distance, duration
and pace of, as well as calories burned during, runs undertaken by
these individuals, as recorded by a suite of digital fitness-tracking
devices. The data also track B3.4M social network ties formed
among runners to connect and keep track of each other’s running
behaviours. We analyse the B2.1M ties in the network for which
we can geographically locate and find weather information for
both nodes connected by a tie. Ties in this network link runners
who follow each other’s running habits. Running information was
not self-reported. When a run was completed, it was immediately
digitally shared with a runner’s friends. Runners could not choose
which runs they shared but rather comprehensively shared all
new running information with their friends upon connecting
their device to the platform.

These data give us unique insight into the daily, coevolving
running and social network patterns of these individuals over
5 years. For example, when we examined progressively more
sophisticated models of the correlations between an individual’s
(also called ego’s) running behaviour and that of his or her
friends (also called peers) (we use the terms friends and peers
interchangeably throughout the paper), we found strong evidence
of the possibility of social contagion in running behaviours in
both model-free correlations and ordinary least squares (OLS)
models that control for time invariant and time varying
characteristics of individuals and their peers, including gender,
height, weight, degree, device type and country. In the OLS
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models, an additional kilometre run by peers was associated with
an additional 6/10th of a kilometre run by ego and an additional
10 min run by peers was associated with an additional 5.3 min run
by ego (see ‘Comparison of IV Estimates with an OLS Model’ in
Supplementary Note 3 for more detail).

Unfortunately, these estimates are only suggestive because
they are subject to the well-known endogeneity biases created
by homophily, confounding effects, simultaneity and other
factors. We therefore focus our analysis on a natural experiment
created by exogenous variation in global weather patterns
across geographies. Our approach leverages an inference
technique called the instrumental variables (IV) framework,
which disentangles endogeneity by using exogenous variation
created by natural events as a shock to one endogenous variable
to estimate its causal effect on another variable (see the Methods
section for more detail).

IV estimation. The results of our IV analysis revealed strong
contagion effects: on the same day, on average, an additional
kilometre run by friends influences ego to run an additional
3/10th of a kilometre (Fig. 1a); an additional kilometre per
minute run by friends influences ego to run an additional 3/10th

of a kilometre per minute faster (Fig. 1b); an additional 10 min
run by friends influences ego to run 3 min longer (Fig. 1c); and an
additional 10 calories burned by friends influences ego to burn
three and a half additional calories (Fig. 1d). This peer influence
diminishes over time, with friends’ running today influencing ego
less tomorrow and the day after for every measure.

Peer effects in exercise behaviours are both statistically and
socially significant. Suppose, for example, that a runner (A)
usually runs 6 km at a pace of 7 min km� 1 (0.143 km min� 1)
and their friend (B) usually runs 6 km at a pace of 8 min km� 1

(0.125 km min� 1). An extra kilometre run by B (an increase from
6 to 7 km) causes A to increase their running distance by 0.3 km
(from 6 to 6.3 km). Also, a 0.01 km min� 1 increase in runner B’s
pace (from 0.125 to 0.135 km min� 1) causes runner A to increase
their pace by 0.003 km min� 1 (from 0.143 to 0.146 km min� 1).

The results in Fig. 1 also summarize the dangers of model
misspecification in the estimation of peer effects. Naive models
that do not account for endogeneity biases created by homophily,
confounding effects, simultaneity and other factors dramatically
overestimate social spillovers. As the table in Fig. 1e shows, OLS
models that control for ego’s (Xit) and peers’ Xp

it

� �
time varying

and time invariant characteristics (including age, gender, height,
weight, degree, device type and country) but that do not
implement the IV identification strategy overestimate social
influence by between 72% and 81%.

Contagion heterogeneity. Peer effects in running are also het-
erogeneous across relationship types. For example, runners are
more influenced by peers whose performance is slightly worse,
but not far worse, than their own as well as by those who perform
slightly better, but not far better, than they do (Fig. 2a). Moreover,
less active runners influence more active runners more than more
active runners influence less active runners (Fig. 2b). These
results are corroborated by heterogeneity across consistent and
inconsistent runners. Inconsistent runners influence consistent
runners more than consistent runners influence inconsistent
runners (Fig. 2c). Social comparisons may provide an explanation
for these results. Festinger’s social comparison theory proposes
that we self-evaluate by comparing ourselves to others27. But,
in the context of exercise, a debate exists about whether we make
upward comparisons to those performing better than ourselves28

or downward comparisons to those performing worse than
ourselves29. Comparisons to those ahead of us may motivate our
own self-improvement, while comparisons to those behind us
may create ‘competitive behaviour to protect one’s superiority’
(27, p. 126). Our findings are consistent with both arguments, but
the effects are much larger for downward comparisons than for
upward comparisons.

We also found strong evidence that social influence depends on
gender relations. Influence among same sex pairs is strong, while
influence among mixed sex pairs is statistically significantly
weaker (Fig. 2d inset). Men strongly influence men, and women
moderately influence both men and women. But, men do not
influence women at all (Fig. 2d). This may be due to gender
differences in the motivations for exercise and competition. For
example, men report receiving and being more influenced by
social support in their decision to adopt exercise behaviours,
while women report being more motivated by self-regulation and
individual planning30. Moreover, men may be more competitive
and specifically more competitive with each other. Experimental
evidence suggests that women perform less well in mixed gender
competition than men, even though they perform equally well in
non-competitive or single sex competitive settings31.

Testing structural theories of contagion. Finally, three theories
describe how social network structure may shape behavioural
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Figure 1 | Peer effects in global running behaviours. The panels display

social influence coefficients from second-stage regressions in the two-stage

least squares specification for friends’ behaviour at time t influencing ego at

time t, tþ 1 and tþ 2 for (a) distance ran in kilometres (km), (b) pace in km

per minute, (c) running duration in minutes and (d) calories burned. Bars

are 95% confidence intervals. (e) The table at the bottom of the figure

compares social influence coefficients and s.e. from the IV models to those

from the OLS models and provides the OLS overestimates of social

influence as a percentage of the IV estimates.
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contagions. Centola and Macy32 argue that complex contagions,
involving costly behaviours, require multiple reinforcing signals
of adoption from different peers to induce behaviour change and
suggest that clustered social networks are therefore more likely
to spread a complex contagion from one neighborhood to
another. Centola16 goes on to predict that in real-world health
behaviours such as exercise, which are more costly in terms of
‘time, deprivation, or even physical pain’, the need for social
reinforcement should be greater than in his own study of less
costly online health behaviours. In contrast, Ugander et al.33

suggest that structural diversity, measured by the number of
unconnected clusters (called ‘components’) with at least one
adopter, not the number of distinct peers, is the critical structural
factor moderating influence. Aral and Walker34, on the
other hand, suggest that embeddedness (the number of mutual
connections), rather than the number of unconnected clusters,
is what drives behavioural contagions. We tested these
three structural theories of social contagion by examining how
contagion in running varied across different network structures
(see ‘Testing Structural Theories of Social Contagion’ section
in Supplementary Note 2 and ‘Structural Theories of Social
Contagion’ in Supplementary Note 3 for details).

We found strong evidence confirming both the Structural
Diversity and Embeddedness theories of social contagion, but the
evidence for Complex Contagion was mixed. Social influence
coefficients under the Complex Contagion theory (which argues
that the number of active friends is the key driver of diffusion
for complex contagions) and the Structural Diversity theory

(which argues that the number of active network components is
the key driver of diffusion) are statistically significantly different
(t-statistic¼ 15.9, N¼ 9.9M). The number of distinct friends who
run is positively correlated with social influence when analysed
alone (Fig. 3a), but this correlation disappears and becomes
negative when we control for the structural diversity of the
behaviourally active peer group (Fig. 3b). At the same time, the
structural diversity of peer group activation (the number of
unconnected network components that exhibit running) strongly
predicts greater positive social contagion effects, even when we
control for the number of distinct friends who run (Fig. 3b). This
replicates the results of Ugander et al.33, who found that, for the
social diffusion of Facebook, the number of active friends predicts
Facebook adoption but that this correlation disappears and
becomes negative when controlling for the structural diversity
of Facebook adopting friends. We describe the evidence for
Complex Contagion as mixed because the theory defines a
complex contagion as one that exhibits adoption thresholds
greater than one, meaning more than one adopter friend is
required for transmission, and suggests that clustering in
behavioural adoption is more conducive to the spread of
complex contagions. Our findings show that contagion occurs
even with only one adopter friend and that unconnected adopter
friends, rather than connected adopter friends, are more likely to
transmit exercise behaviours. These results suggest that exercise is
not a complex contagion, but they do not invalidate Complex
Contagion theory as other behaviours may indeed exhibit
complex contagion dynamics.
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The data also confirm that the embeddedness of a relationship
(the number of mutual friends between contacts) strongly
moderates social influence and contagion in running behaviours
(Fig. 3c), confirming the Embeddedness theory. Unlike Complex
Contagion and Structural Diversity, the Embeddedness theory
does not make predictions about the social structure of adopting
friends but rather about the social structure surrounding a
transmission, whether or not that structure contains other
adopting friends. The embeddedness of a relationship, measured
by the number of mutual friends a dyad shares, can promote
behavioural contagion because of the social monitoring that
embedded relationships facilitate. When two people have many
mutual friends, there are greater opportunities for social
sanctions, reputational consequences for misbehaviour and social
rewards for positive behaviours. Mutual friends may therefore
provide an added incentive to keep up with running buddies
because shirking is widely observed in a set of mutually
reinforcing relationships.

Discussion
Scientists have recently made great strides in understanding social
contagion using longitudinal surveys and narrowly designed
digital experiments. But, if we are to develop a robust, general-
izable and precisely measured understanding of human health
interdependence, we must pursue an alternative approach that
examines generalized peer effects in data on actual behaviours
and real relationships interacting in their natural states. Our work
takes this approach to estimate social contagion in exercise
behaviour by examining detailed, daily exercise behaviours and
social network ties among B1.1M runners worldwide. We found
that exercise is socially contagious, revealing a behavioural
mechanism that could explain the correlations in obesity and
happiness found in earlier work7,8. These results suggest that
social intervention strategies, which account for peer effects, may
spread behaviour change in networks more effectively than
policies that ignore social spillovers9. The work also implies
several avenues for future research.

First, the granularity and precision with which fitness tracking
devices record real-world health behaviours portends a sea

change in our understanding of human behaviour and social
influence at scale. Compared with prior studies, which relied on
imprecise and frequently inaccurate self-reports, the potential for
these kinds of data to extend our understanding of social
behaviour in real-world settings is difficult to overstate. Although
there are limitations to the use of these kinds of data, in many
respects they enable significant advances in the fidelity of
observation and therefore the precision of the science.

Second, the analysis of heterogeneous treatment effects
suggests the broad importance of not focussing exclusively on
average social effects. Different subsegments of the population
react differently to social influence. Such differences suggest
that policies tailored for different types of people in different
subpopulations will be more effective than policies constructed
with only average treatment effects in mind. In fact,
if subpopulations experience countervailing treatment effects,
then average treatment effects may be zero even though different
people are experiencing strong and significant social effects in
opposite directions.

Third, the work points to the importance of examining theories
of social contagion in real-world settings. Although laboratory
experiments are instrumental to our understanding of social
phenomena and help us reason about what types of effects are
possible, people may not behave the same way in naturalistic
settings as they do in the laboratory. It is therefore important to
empirically examine competing theories of social contagion in the
field. Such work is essential, not just in testing the validity of the
theory in the real world but also in obtaining precise estimates of
social contagion that provide more realistic projections of the
outcomes of social and behavioural policy interventions.

Methods
IV framework. We estimated social contagion in exercise behaviours and avoided
well-known empirical challenges in estimating causal peer effects by combining the
running and social network data of B1.1M individuals who ran over 350M km in a
global social network of runners over 5 years with records of the daily global
temperature and precipitation patterns experienced by these same individuals over
time, recorded by over 47,000 weather stations in 196 countries. Similar to natural
experiments35, our approach leverages an inference technique developed by applied
econometricians to identify causal effects across a variety of phenomena, including
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Embeddedness theory). The social influence coefficient estimated for embedded relationships (Regression 2) is statistically significantly greater than the

social influence coefficient estimated for non-embedded relationships (Regression 1) (t-statistic¼ 2.45, N¼ 10.7M). Bars are 95% confidence intervals.
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the impact of income on civil conflict36, poverty on crime37 and riots on labour
markets38. This technique, called the IV framework, disentangles endogeneity by
using variation created by exogenous events as a shock to one endogenous variable
to estimate its causal effect on another variable39.

For example, Angrist40 uses random variation in the likelihood of military
service created by the draft lottery to identify the causal effect of military service on
wages. Since individuals with lower expected wages are more likely to choose to
serve in the military, estimating the raw correlation between military service and
wages produces a biased estimate of the causal effect. However, since the draft
lottery is randomized and therefore uncorrelated with wages, an individual’s draft
lottery number can be used to identify the causal effect of military service on future
earnings. Military service is first regressed on randomly assigned draft lottery
numbers. Then, future wages are regressed on the predicted values of military
service from this first-stage regression. The draft lottery affects the likelihood of
military service because one’s lottery number determines whether one is drafted.
But, the lottery is uncorrelated with past wages and future wage potential (except
through their impact on the likelihood of military service) because lottery numbers
are randomly assigned. Since the military service driven by the draft lottery is
unrelated to the future wage potential of those who serve, unbiased estimates of the
average causal effect of military service on wages can be established by examining
the effect of military service mandated by the draft lottery on the future wages of
those who were randomly selected to serve.

To adapt the IV framework to the network setting, we need to identify a
naturally occurring source of variation in individuals’ running behaviour, which is
exogenous to, or uncorrelated with, the behaviour of their peers. For our purposes,
the weather is an ideal instrument41. As social ties span geographies, our data
record many relationships in which peers experience uncorrelated weather. In these
relationships, the weather experienced by one person is an excellent source of
exogenous variation that perturbs their running behaviour without affecting the
running behaviour of their geographically distant friends. We can then estimate
causal social influence effects in running behaviour in a two-stage least squares
specification, using the uncorrelated weather experienced by peers as an instrument
for identifying the social influence they exert on ego. We specified our model of
individual-level peer effects as follows:

1st stage : �Ap
it¼lWp

it þ a0wi;tþ dt þ g0Xp
it þ y0Xit þm01Ai;t� 1 þ ::

þ m0nAi;tþ dt� 1 þ Z0i þ n0t þ e0it
2nd stage : Ai;tþ dt¼b�Ap

it þ gXp
it þ yXit þ awi;tþ dt þm1Ai;t� 1 þ ::

þ mnAi;tþ dt� 1 þ Zi þ nt þ eit

In the first stage, the average running behaviour of the peers of i at time t, denoted
by a superscript p for peers ð�Ap

it¼1=kit
P

j
AjtÞ, was regressed on the weather

experienced by i’s peers at time t Wp
it

� �
(including temperature and precipitation),

peers’ time varying and time invariant characteristics Xp
it

� �
(including age, gender,

height, weight, degree, device type and country), an individual fixed effect Z0i
� �

,
which controls for all observable and unobservable time invariant characteristics of
i, and time fixed effects to control for temporal variation, such as seasonality or
holidays, that may drive individuals’ and their peers’ running simultaneously n0t

� �
.

In the second stage, ego’s running behaviour at time t, tþ 1, tþ 2 and tþ 3
Ai;tþ dt
� �

was regressed on peers’ running behaviour at time t �Ap
it

� �
and estimated

using the predicted values of �Ap
it from the first stage, controlling for ego’s weather

wi;tþ dt
� �

(including temperature and precipitation), ego’s time varying
characteristics (Xit), peers’ time varying characteristics Xp

it

� �
, ego-level individual

fixed effects (Zi) and time fixed effects (vt).
The fitted values estimated in the first-stage regression capture only those

changes in peer behaviour caused by changes in weather that ego does not
experience. In the second stage, only the variation in peer behaviour precipitated by
exogenous weather events is used to estimate peers’ social influence on ego’s
behaviour. In this way, the IV approach enables causal inference by excluding ego’s
simultaneous effects on peers and variation created by observable and unobservable
confounding factors.

To estimate an unbiased causal effect, we must establish that j’s weather is
highly predictive of j’s running behaviour (a strong instrument) and uncorrelated
with i’s running behaviour (an exogenous instrument)42. We constructed an
optimal set of variables known as instruments by searching for cases in which j’s
weather is uncorrelated with i’s weather and therefore i’s running behaviour. This
search is non-trivial because weather patterns are correlated across geography and
time. We therefore searched over the daily weather correlation matrices of
individual and peer location pairs who run in different cities to find all location
pairs that have uncorrelated weather across time. For example, the weather in
Chicago today is typically uncorrelated with Boston’s weather today but correlated
with Boston’s weather tomorrow and 2 days from now (see Fig. 4a and
Supplementary Fig. 18). So, while the weather in Chicago today is a good
instrument for Chicagoans peer effects on runners in Boston today and 3 days from
now, it is not a good instrument for Chicagoan’s peer effects on runners in Boston
tomorrow or 2 days from now. Of the 2.1M located pairs with weather information,
we analysed the 600K to 1.2M friend pairs with uncorrelated weather across
different regressions, ensuring the validity of our instruments.

Temperature and precipitation also display different non-linear correlations
with running. While running is an approximately log linear function of
precipitation, it has an inverted U-shaped relationship with temperature
(see Fig. 4b,c). We therefore constructed optimal daily individual instruments for
the peer effect of j’s running behaviour on i’s running behaviour using percentile
discretized precipitation and temperature in j’s city for all location pairs that
exhibited uncorrelated weather across time, selecting the optimal instruments
using a Post-Lasso penalized first-stage regression that maximizes predictive
power and minimizes model complexity43. Diagnostics indicate that running is
strongly positively correlated with less precipitation and moderate temperatures
(see Fig. 4b–d) and that these instruments are both strong and exogenous
(see ‘Choosing Optimal Instruments: The Lasso (Post-Lasso) Method’ in
Supplementary Note 2 for details on the Post-Lasso IV method and its diagnostics,
each of which is listed individually for each regression in the table that displays that
regression’s results). On rainy and cold days, there are marked drops in running.
Figure 4b shows daily runner responses to weather changes over 6 months, whereas
Fig. 4c,d show responses per capita, thus underlining the fact that we are observing
real reactions to weather rather than perhaps the correlations between different
types of people who prefer to live in rainy or nice cites and their respective running
behaviours.

Robustness. Numerous diagnostic statistics, manipulation checks and falsification
tests validated our results and confirmed their robustness. Wu–Hausman tests
confirmed that peer effects in running behaviour are endogenous (we rejected the
null hypothesis of exogeneity with Po0.00001, N¼ 9.5–12M observations, see
Supplementary Tables 4–7); F-statistics, which far exceeded the critical threshold of
19.93 for the 10% maximum relative bias due to weak instruments as suggested by
Stock and Yogo44, confirmed that our instruments are strong (F-statistics ranged
from 216 to 430, N¼ 9.5M–12M observations, see Supplementary Tables 4–7);
and Kleinbergen–Paap rk LM statistics and Hansen–Sargan tests confirmed that
our estimates are not under- or over-identified, respectively (KP: Po0.00001;
Hansen–Sargan tests fail to reject the null hypothesis that our instruments are
valid with P values ranging from 0.13 to 0.25, N¼ 9.5M–12M observations,
see Supplementary Tables 4–7). Our analyses were also robust to falsification tests
that examined (i) whether friends’ future running behaviours influenced ego and
(ii) whether unconnected friends influenced each other (both analyses showed no
effect); and to multiple econometric specifications and instrument realizations. For
example, an alternative specification based on simple binary weather instruments
confirmed the validity of our results (see Supplementary Note 4 for more detail on
estimation robustness).

But the work is not without its limitations. First, our influence estimates
may not generalize to other health behaviours. It could be that diet, alcohol
consumption, sexual contact, sleep patterns and other health behaviours are
subject to similar social spillovers or that they exhibit different patterns of
interdependence. Fortunately, new digital systems are recording and promoting the
socialization of these types of behaviours as well. The quantified self-movement
is proliferating the number of platforms that record and share health behaviours
and we encourage more work using these data to estimate human health
interdependence. Second, the individuals in our data may not represent the average
person. Our network sample is reasonably representative of the one in five
Americans who owns a wearable device and the over 100M people who use fitness
trackers worldwide. While this is a substantial and relevant group, they may not
represent the average person and peer effects may not operate similarly in the
absence of devices that socialize health behaviours. Third, we could not record
impression data on when runners observed their peers’ running, so we cannot rule
out heterogeneity in awareness as a possible explanation for heterogeneity in the
treatment effects (that is, that some runners check their friends’ activity more often
and are therefore more influenced by their friends). Finally, our instruments are
only valid for friends who live in different cities and are stronger for compliers than
for non-compliers in our sample (compliers are those who do not run in the rain or
during extreme temperatures and non-compliers are those who do). We report
average peer effects in running behaviour, but since the instruments are valid
for friend pairs in different cities and stronger for compliers, we further
examine and discuss complier and non-complier behaviour in the ‘Compliers and
Non-Compliers’ section in Supplementary Note 4 to more precisely characterize
our generalizations.

Data availability. The weather and running data tables and analysis code are all
available here (though personal, individual-level data have been redacted for legal
and privacy reasons): http://dx.doi.org/10.7910/DVN/VANSK4.
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Supplementary Note 1:
Data

Running Activity Data

Fitness Tracking. Over the last decade, many companies, including Fitbit, Garmin and Mi-

crosoft, among many others, have begun to provide fitness tracking devices which detect and

record the distance, duration, pace and calories burned during exercise activity. These devices

use GPS and accelerometer technology to record the physical location of and exercise activity

engaged in by people who use the platforms. Runners can store, visualize, analyze and share

their activity information with friends through social networks operated by the platforms.

We collected and analyzed exercise and social network data from a global fitness tracking

network to better understand peer effects in exercise behavior and human health interdepen-

dence more broadly. The fitness tracking technology creates an accurate running monitor and

provides real-time feedback to runners during and after each run. The technology allows run-

ners to keep track of all of their routes including a breakdown of pace and distance at different

points during a run. Runners can analyze their own running data and connect with the website

after each run to instantly save the run and share it with friends via the site itself as well as on

Twitter, Facebook or other social media.

After each run, the fitness tracker can be connected to the runner’s personal account at the

platform’s website, where personal fitness activity is stored. The website helps runners monitor

their running experience with dynamic graphs that compare distance and time between single

sessions, as well as weekly and monthly totals.

The website also allows individuals to form social ties and follow other individuals’ running

activity. Therefore an individual can track her training records but also review her friends’

activity as well. The website also allows runners to initiate or participate in competitions with
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friends, compare themselves to other runners across the globe and use a mapping tool that

illustrates individual running routes, which can be shared with others. Given these features, as

we develop in the main text and in argumentation below, our main hypothesis is that peer effects

should play a major role in driving individual training and performance patterns.

Data Collection Procedures. The data contain anonymized running activities (distance,

duration, pace and calories burned) for each run (and in 29% of runs a GPS trace of the actual

run location and trajectory), as well as demographic information for all individuals using the

network’s fitness tracking devices. Running activity observations were collected over a five year

period [We excluded a tiny fraction of data that we believed are not physically possible daily

running activity performance or are likely error records. We remove runs that exceed a duration

of 14 hours (860 minutes) or a distance of 120 km (74.5 miles) or a pace of 1.07 km/min (40

mph).]. At the same time, data on the fitness tracking social network was also collected. The

dataset is organized as dyadic relations (from-to) with a timestamp indicating when the social

tie was formed. We observe link formation for a period of five years. After an individual forms

a social tie, each time they finish a run, their running performance is automatically shared with

their friends. At the end of the observation period there are 3.4 million unique social links in

the data among 1.1 million people (network nodes) who have at least one connection. This

subset of individuals account for 59 million running activity events and 359M kilometers run.

Supplementary Table 1 displays summary statistics for the sample demographics and running

activity respectively. The giant connected component contains ∼1 million nodes (Supplemen-

tary Figure 1), the degree distribution is roughly power law and the average person has four

social connections (mean degree ' 4).

Demographics of the Networked Sample. Since our work is focused on identifying social

influence and behavioral contagion in running and exercise behaviors, we focus our analysis on

socially connected runners. There are approximately ∼1.1 million individuals that account for
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59M million running activity events and 359 million total kilometers run in the social network

during the five years of observation. The average daily number of running activities per person

in the sample is 0.12 runs (S.D.=0.02). The average distance per run is 6.61 km (S.D.=4.60),

the average run duration is 44.50 minutes (S.D.= 32.17), while the average number of calories

burned during a run is 489 cal (S.D.=373).

We categorize individuals’ age, gender and country of application usage at the time of their

registration. We also categorize individuals according to their Body Mass Index (BMI) at the

time of registration, a metric that is defined as the body mass divided by the square of the body

height (kg/m2) and is frequently used to assess how much an individual’s body weight departs

from what is normal or desirable for a person’s height. The networked data do not track or

measure BMI, so using World Health Organization (WHO) recommendations, we delineate five

categories of BMI range: <18.5 (underweight), 18.5-25 (healthy weight), 25-30 (overweight),

30-35 (moderately obese), >35 (severely obese) [“BMI Classification”. Global Database on

Body Mass Index. World Health Organization. 2006.]. Supplementary Figure 2A displays

demographic distributions of our sample with respect to gender, age, country and BMI. There

are almost twice as many men as women in the network. 20 to 40 year olds account for more

than 80% of the networked runners. The United States has the largest share of the network, with

the rest of the countries sharing the remaining 20% of runners, proportional to their population.

Finally, 50% of runners are at a normal weight, 35% of runners are moderately overweight and

only 2% of the sample is underweight.

Supplementary Figure 2B and C display daily activity measured in number of runs per day

as well as the average pace per run taken by individuals in different demographic categories

respectively. Women are more active than men on average and run at a faster pace. Interest-

ingly, older people (especially in their 50’s and 60’s) run more frequently than younger people.

However, these are the ages that experience the slowest pace during runs. Runners from Japan

3



are very frequent runners, however their pace of running is significantly lower compared to in-

dividuals from other countries. Finally, individuals who are at a normal weight or are slightly

overweight are more active runners both in terms of number of daily runs but also in terms of

the pace of their runs.

When we analyze exercise at the daily level, we see that activity depends not only on the

day of the week but also on the specific time of day (see Supplementary Figure 4). Running is

more popular during the weekend and less popular at the beginning of the work week. Also,

people in our sample prefer an afternoon run to running early in the morning (Supplementary

Figure 4). All of the above mentioned time fixed effects (day specific, season specific and year

specific) are controlled for in our subsequent analysis for identifying exercise influence.

Social Network Data

The underlying running social network is organized in dyadic form (from-to) with a timestamp

indicating when the social tie was formed. After an individual forms a social tie, each time

they finish a run, their running performance is shared automatically with their running friends.

At the end of the observation period we have ∼1.1M individuals that are connected by ∼3.4M

links.

The running social network is a sparse network with average degree (the number of con-

nections or ties an individual has) close to 3.7 (S.D.=8.2). As is fairly typical, the network

has a heavy-tailed degree distribution. While the vast majority of runners have a small number

of connections, there is a small number of people with many connections, with the maximum

of 1330 (Supplementary Figure 5). Long tail degree distributions are a common characteristic

of natural and socio-technical networks, from protein-protein interactions to human mobility

systems (2).
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Weather Data

Since our objective is to use the weather as an instrument to identify and quantify exercise influ-

ence, we are interested in collecting complete daily weather data (precipitation and temperature)

for the period of observation. We collect weather data at the station (or tower) level worldwide

through the National Oceanic and Atmospheric Administration (NOAA) (3) [NOAA National

Climatic Data Center. http://www.ncdc.noaa.gov, http://doi.org/10.7289/V5D21VHZ, access

date: Sep 8, 2015.] and other international weather agencies [European Climate Assessment &

Dataset project (http://eca.knmi.nl), UK Climate – Met Office (http://www.metoffice.gov.uk).].

Each weather station (or tower), g, is associated with its exact latitude and longitude to five

decimal places. Supplementary Figure 6 displays the location of the 47,559 available weather

stations in 196 countries worldwide, revealing our nearly complete global coverage. In Sup-

plementary Figure 7 we plot the location of the approximately 33K weather stations in the

contiguous United States. In order to measure the correlation between population density and

weather stations’ spatial distribution, we collect population data from the 2010 US Census in

the ∼ 3,000 counties in the contiguous United States [http://www.census.gov/data.html] and

compare the spatial distribution of population with the spatial distribution of weather towers at

the county level (Supplementary Figure 8). The correlation coefficient between the two distri-

butions is 0.59 suggesting that in highly populated areas the distribution of weather stations is

very dense compared with sparsely populated areas. All of these observations are helpful for

our analysis below, since one of our objectives is to pair weather to individual runners with high

precision.

We assign each individual j to a weather station g by choosing the station that is closest

to his/her running activity if GPS locations are recorded for that individual or otherwise to

the address they provided during registration (Supplementary Figure 9). Individuals who are

training in areas more than 30 km away from the closest weather station are excluded from the
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analysis (about ∼3% of our sample) since it is impossible to identify correctly the weather they

experience. At the end of this process we have a 1:1 matching between stations and fitness

tracking individuals and therefore time series of precipitation and temperature for the period of

interest for each individual.

Precipitation. For each day during the period of social network observation, we collected

daily precipitation data at the weather station level. Daily precipitation is recorded in tenths

of a millimeter and indicates the total precipitation measured by each of the world weather

stations each day. The precipitation is always a positive number and values greater than zero

indicate a rainy day. The maximum precipitation recorded in our data is 179mm (7 inches)(see

Supplementary Table 2).

Temperature. For each day in the same period of observation, we collected daily temper-

ature data at the weather station level. The daily temperature is recorded in tenths of a Celsius

degree and indicates the maximum temperature that the weather station experiences each day.

The temperature can be either positive or negative in either the Celsius or Fahrenheit scale.

In our dataset the minimum temperature recorded was -43oC (-45 oF) and the maximum was

54.5oC (129 oF) (see Supplementary Table 2).
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Supplementary Note 2:
Model Specification and Estimation Procedures

A Causal Model of Exercise Contagion

Since dyadic models can be biased due to heterogeneity in individuals’ connectivity, from here

on we specify estimation models at the ego level.

Let Ait be the fitness activity of individual i on day t. Individual fitness activity is measured

in daily distance (km), duration (min), pace (km/min) or calories burned (cal). We define cijt to

be the binary indicator of the existence (=1) or not (=0) of a relationship between individuals i

and j at time t (Adjacency Matrix). We can then define the degree (connectivity) of an individual

i at time t as kit =
∑

j cijt.

We specify four factors that affect fitness activity. First, there are time fixed effects – which

include holidays, weekends, marathon days etc – that we denote with νt for each time period t.

Second, there are time-invariant, individual fixed effects that separate individuals with different

fitness habits and motivations, that we denote with ηi for each individual i. Third, there are

time varying characteristics like degree. Finally, there is exogenous variation in environmental

conditions that perturb individual utility for outdoor training, like changes in weather patterns.

These effects, which we denote as wit for individual i during time period t, are time-varying

and individual-specific (through the location of individual).

We further specify an endogenous factor that influences the fitness habits of an individual

that is a function of their social ties. In other words we assume that each individual i’s fitness

activity on day t or the next couple of days, t + δt, is influenced by the fitness activity of

her social circle, i.e. from the specific activity on day t of each individual j to whom she is

connected.

Using the above definitions and assumptions we specify a linear model for the running
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activity of individual i at time t+ δt (δt=0,1,2,.. days) as:

Ai,t+δt = βĀpit + γXp
it + θXit + αwi,t+δt + µ1Ai,t−1 + ..+ µnAi,t+δt−1 + ηi + νt+δt + εit, (1)

In the special case where δt =0, we assume a memoryless model where individuals influence

each other only within a day and not across time periods.

The above model assumes that the running activityAi,t+δt of Ego i at time t+δt (δt =0,1,2,..)

is an additive linear function of other factors measured at the same time t+ δt or previous time

periods t + δt − 1, ..., t, including the time fixed effects νt+δt, the effect of exogenous factors

wi,t+δt (temperature and precipitation i experiences on the day of consideration t + δt); the

effect β of an endogenous factor Āpit = 1/kit
∑

j cijtAjt (the average running activity of the

social contacts of i on day t), the effect of the running history of the individual on previous days

Ai,t+δt−1, ..., Ai,t−1, and time invariant factors captured by the individual fixed effects ηi. The

inclusion of the individual-fixed effect ηi controls for all time invariant characteristics of the

Ego i, which further reduces the likelihood that correlation in fitness habits is driven by choice

of social connections. We also control for time varying characteristics of i, like degree, through

Xit and also for time varying and time invariant characteristics of peers like degree, age, gender,

height, weight and country (Xp
it).

The usual assumption is that the error term, εit, is i.i.d. (independent and identically dis-

tributed), but this is clearly violated here since our estimation takes place in a population of

individuals connected in a network. A natural approach in such cases is to assume “clustered

errors” i.e. that observations within a network cluster u are correlated in some unknown way,

inducing correlation in εit, within u. In the presence of clustered errors, OLS or IV estimates

are unbiased but standard errors may be wrong, leading to incorrect inference in a surprisingly

high proportion of finite samples.

Although this model seems straightforward to estimate, the reciprocal influence of an in-
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dividual on her friends’ running state and vice versa makes it difficult to interpret a simple

association in their fitness behavior. Correlation in exercise habits may not only result from

pairwise mutual influence, but also from triangles in the social network. For example, j might

influence l’s fitness behavior, which in turn affects i’s fitness behavior, and so on. We address

the inherent endogeneity of contagion in the next section using instrumental variable theory, a

well known and understood method widely used in the econometrics literature for identifying

causal effects in non-networked data.

Instrumental Variable Theory

Endogeneity exists when an explanatory variable is related to the error term in the population

model of the data generating process – for example, due to omitted variables, measurement

error, or other sources of simultaneity bias or reverse causality, which causes the ordinary least

squares estimator (OLS) to be biased and inconsistent (4). Instrumental Variables (IV) is a

method of estimation that is widely used in many economic, educational and epidemiology

related applications, that provides a way to obtain consistent parameter estimates (5, 6). Exam-

ples where instrumental variables theory is applied to causal inference include estimating the

effect of class size on test scores, the effect of smoking on health, or the effect of financial aid

on college enrollment – all problems where the explanatory variable correlates with the error

term (7).

For example, Angrist uses random variation in the likelihood of military service created by

the draft lottery to identify the causal effect of military service on wages (5). Since individuals

with lower expected wages are more likely to choose to serve in the military, estimating the

raw correlation between military service and wages produces a biased estimate of the causal

effect. However, since the draft lottery is randomized and therefore uncorrelated with wages,

an individuals draft lottery number can be used to identify the causal effect of military service on
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future earnings. Military service is first regressed on randomly assigned draft lottery numbers.

Then, future wages are regressed on the predicted values of military service from this first

stage regression. The draft lottery affects the likelihood of military service because ones lottery

number determines whether one is drafted. But, the lottery is uncorrelated with past wages and

future wage potential (except through their impact on the likelihood of military service) because

lottery numbers are randomly assigned. Since the military service driven by the draft lottery is

unrelated to the future wage potential of those who serve, unbiased estimates of the average

causal effect of military service on wages can be established by examining the effect of military

service mandated by the draft lottery on the future wages of those who were randomly selected

to serve.

Assume we specify a simple linear model Y = βX + ..+ u, where the explanatory variable

X is correlated with the error term u. An instrument Z is a variable that (a) is correlated

with the endogenous explanatory variable Y (conditional on the other covariates), and (b) does

not correlate with the error term u. The first assumption requires that there is an association

between the instrument Z and the variable being instrumented X while the second assumption

excludes the instrument Z as a regressor in the model of Y . In linear models, (a) and (b) are

basic requirements for using IV theory.

If the instrument Z is valid, i.e. satisfies the above conditions of relevance and exogeneity,

then the coefficient β can be estimated using an IV estimator in a Two Stage Least Squares

(2SLS) specification. In the first stage, each explanatory variable that is an endogenous covari-

ate in the equation of interest X is regressed on all of the exogenous variables in the model,

including both exogenous covariates in the equation of interest and the excluded instrument,

Z. In the second stage, the regression of interest is estimated as usual, except that in this

stage each endogenous covariate is replaced with the predicted values from the first stage X̂ as

Y = β̂X̂ + ..+ u. β̂ is the IV estimation of the causal effect β. Let’s assume that Ego’s friends
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running activity, Āpit = 1/kit
∑

j cijtAjt, is an endogenous factor in our estimation model of

Supplementary Equation 1. Let’s further suppose that an exonenous variable, wjt is available

for each of Ego’s friends j = 1, 2, ...ki,t, from which we can design an instrument,W p
it = f(wjt)

that perturbs the endogenous factor, Āpit, and meets the relevance and exogeneity conditions of

a valid instrument. Then, a Two Stage Least Squares (2SLS) estimation model can be specified

as follows:

1st stage: Āpit = λW p
it + α′wi,t+δt + γ′Xp

it + θ′Xit + µ′1Ai,t−1 + ..+ µ′nAi,t+δt−1 + η′i + ν ′t+δt + ε′it

2nd stage: Ai,t+δt = βĀpit + γXp
it + θXit + αwi,t+δt + µ1Ai,t−1 + ..+ µnAi,t+δt−1 + ηi + νt+δt + εit,

(2)

where in the second stage Āpit are the predicted values from the first stage that are assumed to be

orthogonal to εit and β is the social influence coefficient (causal effect) that we are interested in

estimating.

The credibility of these estimates hinges on the selection of suitable instruments. Good

instruments are often created by policy changes. For example, the cancellation of a federal

student-aid scholarship program may reveal the effects of aid on some students’ outcomes.

Other natural and quasi-natural experiments of various types are commonly exploited, for ex-

ample, Miguel, Satyanath, and Sergenti (2004) use weather shocks to identify the effect of

changes in economic growth (i.e., declines) on civil conflict (8). In the context of peer ef-

fects and social influence IV theory was used by Tucker (2008) to identify peer effects in TV

streaming technology adoption using the World Cup as an instrument (9).

Recently Coviello et al. (2014) used rainfall as an instrument to measure contagion in emo-

tional expressions on Facebook (10). They use data on emotional expressions on Facebook as a

proxy for happiness and other emotions aggregated to the city level across the US and develop

a network of friendship across the largest US cities. They use rain as instrument for the peer

cities’ emotions to detect causal peer effects in emotional contagion across cities. The main
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differences between our paper and Coviello et al. (2014) paper are: (i) we use a behavior that

we measure directly using tracking devices rather than inferring behavior or emotion through

written expressions (the later is subject to similar measurement error as self reports). (ii) We

estimate an individual level model, rather than a city aggregated model. This provides incred-

ible precision and fidelity because individuals may have friends in cities that are not typical

of residents of that city. This heterogeneity in connectivity is lost in city level aggregations

of networked data. (ii) We use a robust methodology of developing, designing and choosing

optimal percentile discretized rainfall and temperature instruments that generate the greatest

variation in peers’ running behavior while still satisfying the exclusion restriction. Coviello et

al. (2014) use a simple binary indicator of rain. This allows us to finely tune the instruments and

to measure individual level compliance (whether individuals run through the rain and extreme

temperatures), allowing us to mathematically characterize the generalizability of our estimates

(see the Section on Compliers and Non-Compliers below).

The Weather as an Instrument

We propose the weather as an instrument for detecting contagion in exercise habits across social

network ties. Instead of changing individuals’ running activity directly with an experimental

treatment (which seems difficult and expensive), we let the weather do the work for us by

measuring how weather-induced changes in individual exercise behavior predict changes in the

individuals’ friends’ exercise behavior. First, we must establish the two requirements for using

an instrumental variable approach, relevance, i.e. detecting a strong relationship between the

instrument (weather) and the endogenous predictor (friends’ running activity), and exogeneity,

i.e. weather changes that friends experience do not directly affect Ego’s running behavior.

Relevance. Weather is unlikely to be affected by individuals running activity, therefore if

we find a relationship between the two, it suggests that weather influences the running activity
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of individuals and not vice versa. We have two distinct weather indicators available, rainfall

and temperature. In Supplementary Figure 10, we plot the daily, per capita running activity for

fifteen large cities in the United States as a function of the precipitation and temperature experi-

enced in those cities. It is clear that more precipitation is associated with lower running activity,

in a monotonic fashion (similar to the graph in Supplementary Figure 11A). On the other hand,

the relationship between running activity and temperature is non-monotonic, suggesting that

very high and very low temperatures are associated with reduced exercise activity (similar to

the graph in Supplementary Figure 11B). We further access the granularity of our dataset to

visualize how bad weather affects running. In Supplementary Movies 1 and 2 we visualize the

footprint of running in Manhattan (New York, NY) during a sunny Saturday afternoon and dur-

ing a rainy Saturday afternoon, showing how bad weather inhibits running (see Supplementary

Figures 25 and 26). We have established a strong association between weather and running

activity suggesting that precipitation and temperature can potentially serve as instrumental vari-

ables in order to detect peer effects in fitness habits and activities. We test the strength of these

instruments more formally in our evaluation of the first stage regressions as described below.

Exclusion Restriction–Exogeneity. One of the biggest concerns in a model like this is that

friends’ weather is correlated, so the instrument might actually just be a proxy for the direct

effect of weather on a person’s running behavior – a violation of the “exclusion restriction” (5).

Unfortunately, weather patterns are highly correlated, both spatially and temporally. For exam-

ple, geographically proximate regions are more likely to experience the same weather on the

same day. A rainy day in Chicago, IL implies with large probability that it is a rainy day in

Indianapolis, IN (200 miles south of Chicago). At the same time there is a high probability of

rain tomorrow in Boston, MA if it is raining today in New York, NY (180 miles south-west of

Boston). In Supplementary Figure 12 we plot a typical precipitation pattern over the Midwest

and south of the United States and how this pattern moves, over geography and time, over the
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next two consecutive days. In Supplementary Figure 13 we visualize how the weather in four

large cities in the U.S. correlates with weather in the rest of the contiguous U.S. on the same

day (left panel), one day later (middle-left panel), two days later (middle-right panel) and three

days later (right panel). Our data reveal some reliable weather patterns over the U.S. that typi-

cally move from from west to east. In addition, the data reveal that weather pattern correlations

across time drop near zero after three or more days.

The only symmetry we should expect between the rows of subplots appear in Supplementary

Figure 13 is for the same day weather correlations at the level of the cities of interest. For

example if there is no same day correlation between New York NY and Chicago IL (as shown

in the top left subplot) we should not expect same day correlation between Chicago and New

York NY (in the second row left subplot). Otherwise the same day weather correlation figures

(left panels) should not be symmetric since each city’s co-variation with other cities may not

be the same. For example, while in the upper left figure there is correlation between the same

day weather of New York and Columbus OH, there is no correlation between Chicago IL and

Columbus OH in the second-row left figure (see Supplementary Table 3).

In order to meet the exclusion restriction requirements in our IV analysis, we only consider

how running behavior is transmitted between social dyads that have no correlation in weather

patterns. To do so we compute the sample Pearson correlation coefficient between the weather

of all links (it+δt,jt) using the weather history for 45 months as (11):

ρit+δt,jt =

∑
t (wi,t+δt − wi)(wjt − wj)√∑

t(wi − wi,t+δt)2
√∑

t(wjt − wj)2
, (3)

where wi,t+δt denotes the weather that individual i (Ego) experiences on day t+ δt (δt=0,1,2,..

days), wj,t is the weather that individual j (Friend) experiences on day t and wi and wj are the

average weather i and j respectively experience for the period of observation. The summation

in Supplementary Equation 3 runs from day t = 1 and for a period of∼5 years. The correlation
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coefficient ranges from -1 to 1. A value of 1 implies that individual i on day t+ δt experiences

the same exact weather as individual j on day t. In the case of δt = 0, a correlation coefficient

equal to 1 means that the two individuals are experiencing exactly the same weather, i.e. they

are living in the same city. On the other hand, a value of -1 implies that whenever i experiences

good weather on day t+ δt, j experiences bad weather on day t. Finally, a correlation value of

0 implies that there is no linear correlation between the weather the two individuals experience.

Using the correlation values of all social dyads in our network ρit+δt,jt we are able to drop those

who experience similar weather (i.e. large correlations) by imposing a correlation threshold of

ρc = +0.025 over which any dyad is excluded from our analysis. From the total number of

∼2.1M links in our analysis (for which we can geographically locate and find weather infor-

mation for both nodes connected by the link), we exclude ∼1.51M when we consider same day

correlations (t vs t), ∼1.44M when we consider one day difference correlations (t + 1 vs t),

and ∼0.9M when we consider two day difference correlations (t + 2 vs t). In the case of more

than two day differences, the correlation in almost all dyads drops below the threshold point

and therefore almost no link is excluded (see also right panel in Supplementary Figure 13). We

provide detailed tests of the sensitivity of our analysis to this choice of threshold below. The

results of these analyses show that our estimates are not sensitive to the choice of threshold.

Choosing Optimal Instruments: The Lasso (Post-Lasso) Method

For each peer j on day t we consider a collection of binary weather indicators: N for the

rain that the individual experiences r(n)jt (n = 0, 1, ...N − 1), and M for her temperature θ(m)
jt

(m = 1, ...M−1). In order to generate binary indicators we divide the range of precipitation and

temperature that individuals experience into percentiles and define areas where the precipitation

and temperature are larger or smaller than point percentiles, as we described in Supplementary

Figure 14. In this way, we take into account and differentiate peers who live in cities with
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different average weather patterns. For example, a day with 2 inches of precipitation in Seattle

is different than a day with the same amount of precipitation in Los Angeles. We assume that

a rainy day in a typically dry city has larger marginal effects on running behavior than in a city

that is typically wet. Let’s assume that we have two peers, one living in a typically wet and cold

city and one in a typically dry and warm city. We design our binaries to make sure that 2 inches

of rain and a temperature of 20◦C in both cities activates different precipitation and temperature

binaries. In this way we take into account city specific weather effects.

After we develop the different weather binaries for each peer (Supplementary Figure 14),

we use a LASSO (Least Absolute Shrinkage and Selection Operator) penalized regression in

the first stage of the 2SLS model in Supplementary Equation 2, to choose the set of instruments

that best predicts the endogenous variable and then use them in the two stage least squares

model (12–15). The equation we use to estimate the LASSO penalized regression can be written

as:

Āpit = λr,0W
(r,0)
it + ..+ λr,N−1W

(r,N−1)
it + ...+ λθ,0W

(θ,0)
it + ..+ λθ,M−1W

(θ,M−1)
it +

+α′wi,t+δt + γ′Xp
it + θ′Xit + [µ′1Ai,t−1 + ..+ µ′nAi,t+δt−1] + η′i + ν ′t+δt + ε′it, (4)

where Āpit is the average running activity of i’ s peers, W (r,n)
it (n = 0, 1, ..N − 1) is the sum of

rain binary indicators r(n)j,t over i’ s peers, W (r,n)
it =

∑
j r

(n)
j,t and W (θ,m)

it (m = 0, 1, ..M − 1) is

the sum of the temperature binary indicators θ(m)
j,t over i’ s peers, W (θ,m)

it =
∑

j θ
(m)
j,t .

Using the LASSO, we select optimal instruments that minimize the sum
∑

(Āpit − ˆ̄Apit)
2

subject to |λr,0| + |λr,1| + ... + |λθ,M−1| ≤ s, where the first sum is taken over observations

in the dataset and ˆ̄Apit are the predicted values of the regression. The bound s is a tuning

parameter that controls the tradeoff between the penalty and the fit (loss/likelihood). When

s is large enough, the constraint has no effect and the solution is just the usual multiple linear

least squares regression of Āpit on W (r,0)
it , W (r,0)

it ,...,W (θ,M−1)
it . However for smaller values of s
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(s ≥ 0), the solutions are shrunken versions of the least squares estimates. Often, some of the

coefficients λ’s are zero. Choosing s is like choosing the number of predictors to use in the first

stage regression model, and cross-validation is a good tool for estimating the best value for s.

After using the above procedure for picking the “best” set of instruments for the endogenous

variable Āpit, we return to the 2SLS model (Supplementary Equation 2) and run the two stages

(including an OLS first stage regression) using the chosen set of instruments W p
it.

Estimating Treatment Effect Heterogeneity

In order to gain insight regarding influential members of the running community we study, we

introduce heterogeneous treatment effects in the Ego level estimation by examining time in-

variant features of runners. First, we are interested in whether a more active friend is more

influential than a less active one. To measure these effects we split the neighborhood of each

Ego j into subsets of peers according to the ratio between their overall running activity over

the period of observation and Ego’s total running activity. We first calculate the overall running

activity of the Ego and each peer (Ai =
∑

tAi,t and Aj =
∑

tAj,t, j = 1, 2, ...kit respec-

tively) and calculate all ratios of peer’s running activity to Ego’s running activity, Λji = Aj/Ai,

j = 1, 2, ...ki,t, where kit is the number of peers Ego i has at time t. We then define several

continuous ranges for Λij: (i) Λ < 1/16, (ii) 1/16 ≤ Λ < 1/8, (iii) 1/8 ≤ Λ < 1/4, (iv)

1/4 ≤ Λ < 1/2, (v)1/2 ≤ Λ < 2, (vi) 2 ≤ Λ < 4, (vii) 4 ≤ Λ < 8, (iix) 8 ≤ Λ < 16 and

(ix) Λ ≥ 16, and categorize peers into subsets according to the value of Λij . We then define an

interaction model using the Ego level model (Supplementary Equation 1) as a baseline, with δt

=0 as follows:

Ait =
9∑

h=1

βhĀ
p(h)
it + γXp

it + θXit + αwi,t+δt + µ1Ai,t−1 + ηi + νt + εit, (5)

where Āp(h)it is the average running activity of the peers at time t in the subgroup h (h =

i, ii, ...ix). We estimate the average running activity of the Ego’s peers in each range of nine
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subcategories of Λ (h = i, ii, ...ix) defined above at time t. We then estimate the instrumental

variable regression, using the precipitation and temperature binary indicators chosen from the

LASSO penalized regression to instrument for the endogenous term.

Since the above model only gives us partial information, in a relative sense, on how indi-

viduals with different levels of activity influence each other, for completeness we examine how

two very active friends (or mostly inactive friends) influence each other. To do that we first

separate all individuals into two categories, active (“H”) and inactive (“L”) by comparing their

total running activity over the period of observation to the average running activity of all run-

ners. For each Ego i, we then split her/his neighborhood (peers j = 1..kit) into active pa =“H”

and inactive pa =“L” runner groups and define a model of exercise contagion that includes an

interaction term for the level of activeness as:

Ait =
∑

ea=H,L

∑
pa=H,L

βea,paE
(ea)Ā

p(pa)
it + γXp

it + θXit + αwi,t+δt + µ1Ai,t−1 + ηi + νt + εit, (6)

where Āp(pa)it is the average running activity of the peers at time t in the active group (pa = H)

and the inactive group (pa = L) andE(ea) is an indicator variable denoting whether ego is active

(ea = H) or inactive (ea = L). The four possible scenarios are: (i) Ego is an active runner and

peers are active runners, (ii) Ego is an active runner and peers are inactive runners, (i) Ego is an

inactive runner and peers are active runners, (iv) Ego is an inactive runner and peers are inactive

runners. We then estimate an instrumental variable regression to identify the causal effect β,

using the precipitation and temperature binary indicators chosen from the LASSO penalized

regression to instrument for the endogenous interaction term.

We next consider an interaction model that investigates the role of running consistency (in

time) in social contagion. We are interested in whether a consistent running friend is more

influential than a sporadically active friend, or the other way around. First, for each runner

in our dataset, we identify the periods during which their running activity is consistent. We
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do so by isolating the periods where activity is continuous without any inactivity lasting more

than 2 weeks (see Supplementary Figure 15 below for illustration). By following the same

methodology for all the available runners, we identify 376,000 distinct running activities with

an average consistency length of 34 days (S.D. 62 days).

We then define an individual as a consistent runner if the largest consistency period lasts

more than 1 month. Otherwise we define the individual as an inconsistent runner. For each ego

j we split her/his neighborhood (peers j = 1..kit) into consistent “C” and inconsistent runner

groups “I” and we define a model of exercise contagion that includes an interaction term for

running consistency as follows:

Ait =
∑
ec=C,I

∑
pc=C,I

βec,pcE
(ec)Ā

p(pc)
it + γXp

it + θXit + αwi,t+δt + µ1Ai,t−1 + ηi + νt + εit, (7)

where Āp(pc)it is the average running activity of the peers at time t in the consistent group (pc =

C) and the inconsistent group (pc = I) and E(ec) is an indicator variable denoting whether ego

is consistent (ec = C) or inconsistent (ec = I). The interaction term in the above equation

considers all four possible scenarios: (i) Ego is a consistent runner and peers are consistent

runners, (ii) Ego is a consistent runner and peers are sporadic runners, (i) Ego is a sporadic

runner and peers are consistent runners, and (iv) Ego is a sporadic runner and peers are sporadic

runners. We then estimate an instrumental variables regression to identify the causal effect β,

using precipitation and temperature instruments chosen by the LASSO penalized regression to

instrument for the endogenous interaction term..

Furthermore, we are interested in how gender affects exercise influence. For each Ego i we

split their neighborhood (peers j = 1..kit) into male “M” and female “F” peers and we define a

model of exercise contagion that includes an interaction term for gender as follows:

Ait =
∑

eg=M,F

∑
pg=M,F

βeg,pgE
(eg)Ā

p(pg)
it + γXp

it + θXit + αwi,t+δt + µ1Ai,t−1 + ηi + νt + εit, (8)
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where Āp(pg)it is the average running activity of the peers at time t in the male group (pg = M )

and the female group (pg = F ) and E(eg) is an indicator variable denoting whether ego is male

(eg = M ) or female (eg = F ). The interaction term in the above equation considers all four

possible scenarios: (i) male peers/male Ego, (ii) female peers/male Ego, (iii) male peers/female

Ego and (iv) female peers/female Ego. We then estimate an instrumental variables regression

to identify the causal effect β, using precipitation and temperature instruments chosen by the

LASSO penalized regression to instrument for the endogenous interaction term.

Finally, using a slightly modified model, we investigate the role of same-gender and cross-

gender influence. For each Ego i we split their neighborhood (peers j = 1..kit) into a same-

gender group “S” and a cross-gender group “C” of peers with respect to Ego’ s gender. We

define a model of exercise contagion that includes an interaction term for gender as follows:

Ait =
∑
g=S,C

βgĀ
p(g)
it + γXp

it + θXit + αwi,t+δt + µ1Ai,t−1 + ηi + νt + εit, (9)

where Āp(pg)it is the average running activity of the peers estimated in the same-gender group

(g =“S”) and in the cross-gender group (g =“C”) at time t. The two categories are (i) same

gender and (ii) cross gender. We then estimate an instrumental variables regression to identify

the causal effect β, using precipitation and temperature instruments chosen by the LASSO

penalized regression to instrument for the endogenous term.

Testing Structural Theories of Social Contagion

The Complex Contagion theory contends that multiple sources of exposure to a behavior in-

crease the likelihood that an individual adopts the behavior (16, 17). We test whether complex

contagion explains contagion in our exercise data by investigating the impact of the number of

running friends on Ego’s running behavior. We do so by defining a model for Ego’s activity

(dependent variable) where the endogenous effect is the number of friends that are active on

20



the same day, #FRt, controlling for the total number of connections Ego has, kit, and all other

characteristics of Ego and their peers, elements of Xit and Xp
it respectively as follows:

Ait = β(#FRt) + γXp
it + θXit + αwi,t+δt + µAi,t−1 + ηi + νt + εit. (10)

We use an instrumental variable method where we instrument the endogenous variable #FRt

with the precipitation and temperature binary indicators chosen from the LASSO penalized

regression. We anticipate that the number of active friends is a positive predictor of social

influence.

To double check the functional relationship between exercise influence and the number of

active friends, we define an additional model where we have two endogenous regressors, the

number of active friends #FRt and its square (#FRt)2:

Ait = β1(#FRt) + β2(#FRt)
2 + γXp

it + θXit + αwi,t+δt + µAi,t−1 + ηi + νt + εit. (11)

The functional form of exercise influence and the number of active friends depends on the

absolute value and sign of the estimation coefficient β2. We use the 2SLS methodology by in-

strumenting the two endogenous regressors β1 and β2 with at least two weather binary indicators

that we choose using a LASSO regression analysis.

We then examine how the structural diversity of the Ego’s neighborhood affects exercise in-

fluence by investigating how fitness contagion is driven by the number of (running) active con-

nected components in Ego’s network. To count the number of connected components that are

active, we first go through all nodes (runners), identify their immediate connections (neighbor-

hood), and find the connected components in the neighborhoods (see Supplementary Figure 16

for illustration).

We then define a model of Ego’s activity in which the endogenous effect is the number of

connected components that are active on the same day (#CRt) controlling for the total number
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of connections that Ego has, kit, an element of Xit, as follows:

Ait = β(#CRt) + γXp
it + θXit + αwi,t+δt + µAi,t−1 + ηi + νt + εit. (12)

We use a 2SLS instrumental variable method to estimate the causal effect β using a subset of the

binary weather indicators to instrument for the number of running (active) components #CRt.

Ugander et al. recently showed in a Facebook study that the probability of contagion is

highly correlated with the number of connected components in an individual’s contact neigh-

borhood, rather than with the actual size of the neighborhood (18). We test this hypothesis by

defining an exercise contagion model where we have two endogenous regressors, the number

of active friends #FRt and the number of active connected components in Ego’s neighborhood

#CRt, making sure that we control for Ego’s connectivity at time t, kit an element of Xit, as

follows:

Ait = βf (#FRt) + βc(#CRt) + γXp
it + θXit + αwi,t+δt + µAi,t−1 + ηi + νt + εjt. (13)

We use an instrumental variable method to estimate the two causal effects βf and βc by

instrumenting the two endogenous variables with a subset of weather binary indicators chosen

using a LASSO penalized regression.

One of the most widely studied social factors theorized to affect the strength of social influ-

ence is structural embeddedness, the extent to which individuals share common peers. In this

subsection we investigate how structural embeddeness moderates social influence in exercise

habits, while simultaneously controlling for confounding factors that can bias inference in net-

worked settings. Here, we adopt the conventional network structural measure of embeddedness,

defined as the number of common friends shared by individuals and their peers (19–21). We

first split the neighborhood of each Ego i into two groups of peers, one in which peers share no

common friends with Ego eij = 0 and one in which all peers share at least one common friend
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with Ego eij = 1, where e is a categorical variable. We then propose an interaction model of

exercise contagion based on our estimation model as follows:

Ait = βĀ
p(E)
it + γXp

it + θXit + αwi,t+δt + µ1Ai,t−1 + ηi + νt + εit, (14)

where Āp(E)
it is the average running activity of the set of peers that are embedded. We also

estimate a model that examines the influence (β) of set of peers in Ego’s neighborhood that

are not embedded (Āp(NE)
it ). We use an instrumental variable method to identify the effect β

by instrumenting the endogenous effect Āp(E)
it (Āp(NE)

it ) with a subset of the available weather

binary indicators.
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Supplementary Note 3:
Results

Model-Free Evidence of Exercise Clustering

We first present some model free evidence for running activity clustering in the network. In

Supplementary Figure 17 we plot individuals’ daily activity measured by the number of runs

they engage in [runs] as a function of the number of connections individuals have, displayed as

PlotBoxes with delineations for minimum, first quartile, median, third quartile, and maximum.

It is clear that running activity is an increasing function of the number of friends individuals

have. However, this is only evidence of correlations in the system. We have to set up a frame-

work to identify the causal effect of social influence that can separate it from other explanations

of correlation like homophily or other confounds. Our framework uses weather patterns as an

instrument for peers running activity to understand causality in exercise influence.

Peer Effects–IV Estimation Results

While the fixed effect models provide evidence of the possible existence of peer effects in the

system, their estimates are biased. To produce unbiased estimates of the magnitude of peer

effects in exercise, we execute the IV estimation method described in Supplementary Note 2.

We organize our data into Ego i and day t panels, where for each day of observation we have

the daily running activity of Ego Ait as measured by the four available indicators of running

performance: distance [km], pace [km/min], duration [min] and calories burned [cal] during a

day t.

We next set up the different control variables for Ego’s own running activity. First, for each

Ego i on each day t, we have two meteorological binary indicators, one for the precipitation

and one for the temperature wit = (rit, θit). The binary indicator for Ego’s precipitation on
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day t (rit) takes value 1 if the total precipitation that Ego experiences on day t is larger than

their seasonal average calculated for a period of 2 months, centered on day t, and 0 otherwise.

The binary indicator for Ego’s temperature on day t takes the value 1 if the temperature that

Ego experiences on day t is either in the range (− inf, 〈θi〉 − 3/4(〈θi〉 − θi,min)] or in the range

[〈θi〉 + 3/4(θi,min − 〈θi〉), inf), where θi,min, θi,max and 〈θi〉 are the minimum, maximum and

average temperature that Ego i experiences respectively in a 2 month period centered on day t.

We also control for Ego’s past running activity Ai,t−1, Ai,t−2.

To specify the endogenous effect Āpit, for each Ego i we identify their running buddies and

compute the Pearson correlation coefficient between the weather each peer experiences and the

weather Ego experiences, dropping all the peers whose correlation coefficient is larger than the

threshold described in the “Weather as an Instrument” in Supplementary Note 2 . By excluding

all links for which peers’ weather correlates with Ego’s weather, we ensure the validity of our

exclusion restriction. Using the remaining peers (kit in total), we calculate their average running

activity as Āpit = 1/kit
∑

j cijtAjt, where Ajt is the running activity of the peer j and cijt is the

adjacency matrix. Note that when we are interested in identifying same day social influence

(δt = 0), we take into account time zone in order to design Āpit making sure that peers running

took place before Ego’s running.

We also prepare the time varying characteristics of Ego i (Xit) as well as the time varying

and time invariant characteristics of peers that we control for in our model (Xp
it). The former

includes the degree of i while the latter includes the average degree of peers, the average age of

peers, the average height and weight of peers, the fraction of peers that are men (women) and

the fraction of peers that are located in US, UK, Canada, or another country.

We finally specify the weather variables that instrument for the endogenous effect Āpit. For

the kit peers of each Ego i, we identify the Cj unique weather towers to which peers are most

closely located. Note that the number of unique weather towers that the kit peers are closely
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located to is always Cj ≤ kit, since it is possible that more than one of Ego’s peers are located

in the same city. By considering only the towers (or cities) with distinct weather, we make sure

that we do not violate the exclusion criterion of the IV model. Each of these Cj weather towers

experiences different weather. For each of these weather towers, we define N rain (r(0)l,t , ..r
(N−1)
l,t ,

l = 1, 2, ..Cj) and M temperature (θ(0)l,t , ..θ
(M−1)
l,t , l = 1, 2, ..Cj) binary indicators according to

the methodology described in Supplementary Figure 14. We finally define N+M variables as

the sum of the weather binary indicators over theCj unique weather towers asR(0)
t =

∑cj
l=1 r

(0)
l,t ,

.. ,R(N−1)
t =

∑cj
l=1 r

(N−1)
l,t ,Θ(0)

t =
∑cj

l=1 θ
(0)
l,t , .., Θ

(M−1)
t =

∑cj
l=1 θ

(M−1)
l,t . The weather variables

R
(n)
t , n = 0, 1, .., N−1 and Θ

(m)
t , m = 0, 1, ..,M−1 are the candidates to serve as instruments

for the endogenous effect Āpit.

To choose the optimal set of weather instruments (W p
it), we run a LASSO penalized regres-

sion in the first stage of our 2SLS model. We regress our endogenous variable Āpit on all the

N+M weather variables, controlling for all other exogenous variables that appear in the second

stage, including time and Ego fixed effects. The LASSO produces a sparse model, where only

the coefficient of R(7)
t and Θ

(2)
t are nonzero when we consider distance as the running activity

indicator. In the case of duration, pace and calories, the LASSO chooses R(7)
t and Θ

(3)
t as the

best combination of instruments. This Post LASSO method selects the optimal set of instru-

ments that maximizes the strength of the first stage regression while minimizing complexity.

But, it is important to note that because theoretical guarantees in the IV method apply to OLS

estimates in the first stage, the Post LASSO methods optimally selects variables for the first

stage regression, which we ultimately estimate using OLS (see (15)). We estimate the 2SLS

model specified in Supplementary Equation 2 using the above selected weather variables as

instruments to estimate the causal effect β.

However, as mentioned above, there is interdependence between observations in the same

network cluster u. Therefore our IV estimation will give us unbiased coefficient estimates, but
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most likely give us wrong estimates of the standard errors. We therefore correct our standard

errors by first partitioning our graph into 15144 communities of average size 7.7 nodes (S.D.

= 41), using the classic method of optimal modularity, proposed by Newman et al. (22) and

cluster our standard errors with respect to these discovered network communities (we discuss

this method in more detail in “Non-Independence: Clustering and Standard Errors” in Supple-

mentary Note 4).

Supplementary Tables 4 to 7 report the estimates–with standard errors, t-statistics, p-values

and 95% confidence intervals–for the first and second stage of the 2SLS regression for the model

in Supplementary Equation 2. Each Table refers to a different exercise indicator (4: distance, 5:

pace, 6: duration and 7: calories). In each Table, the estimates for time-lagged causal peer

effects with δt =0,1,2 are also displayed. The standard errors are cluster corrected. These

estimates are graphically displayed in Figure 1 of the main manuscript (influence coefficient

estimates with 95% confidence intervals).

The contagion parameter estimates β from the second stage regression are always positive

and significant, indicating significant social influence in running behaviors. On average, an

extra kilometer run by Ego’s peers causes an increase in Ego’s running activity by more than

a quarter of a kilometer on the same day. To illustrate the main result, lets assume that a

runner (A) usually runs 6km at a pace of 7 minutes per kilometer (0.143 km/minute) and their

friend (B) usually runs 6km at a pace of 8 minutes per kilometer (0.125 km/minute). An extra

kilometer run by B (an increase from 6km to 7km) causes A to increase their running distance

by 0.3km (from 6km to 6.3km). Also, a 0.01 km per minute increase in runner Bs pace (from

0.125 km/minute to 0.135 km/minute) causes runner A to increase their pace by 0.003 km per

minute (from 0.143 km/minute to 0.146 km/minute).

Diagnostics. We compute multiple diagnostic statistics to assess the quality and robust-

ness of our estimates. First, we verify that the model is not underidentied. For that we use

27



Kleinbergen-Paap rk LM statistic to test the null hypothesis of underidentication (23). All of

our tests reject the null hypothesis (Supplementary Tables 4 to 7). Second, we verify that the

instruments are good predictors of the endogenous explanatory variable in the first-stage re-

gression. “Weak” instruments would cause poor predicted values in the first-stage regression

and poor estimation in the second-stage regression. To ensure the instruments are not weak,

the Cragg-Donald Wald F statistic should exceed the critical threshold suggested by Stock and

Yogo (24). In all cases the Cragg-Donald Wald F statistic exceeds the critical thresholds, sug-

gesting that the weather variables we select are strong instruments. Furthermore, we need to

test if the friends’ activity Āpit is indeed endogenous. The Wu-Hausman F statistics tests the

null hypothesis that the variable under consideration is exogenous (25, 26). All of our tests are

significant and reject the null hypothesis and confirm that friend’s activity is indeed endogenous

(see diagnostic statistics in Supplementary Tables 4 to 7). Finally, we test for overidentification

using the Hansen-Sargan (HS) test (27). The null hypothesis is that the instruments are valid

(i.e., uncorrelated with the error term) and that the excluded instruments are correctly excluded

from the estimated equation. Results of the Hansen and Sargan (HS) tests suggest we are using

valid instruments.

Comparison of IV Estimates with an OLS Model

In order to compare the Instrumental Variable estimates with a less sophisticated model, we

build the corresponding OLS model. This model takes into account a) the social links consid-

ered for the IV estimation, i.e. all the links where Ego’s weather is not correlated with Friend’s

weather, b) it is considered on the Ego level and c) it is based on a daily level panel exactly as

our main specification model. The OLS model is a simple regression model similar to the one

in Supplementary Equation 2 that control for ego’s Xit and peer’s Xp
it time varying and time

invariant characteristics (including age, gender, height, weight, degree, device type and coun-
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try), without considering the individual and time fixed effects. In Supplementary Table 8 we

present the results of the OLS model peer effects estimation along with a comparison to the IV

estimations. The OLS models without ego-level fixed effects overestimate influence by between

71%-82%, depending on the dependent variable in question; These are useful comparisons that

shed light on the value of the IV estimator.

Treatment Effect Heterogeneity

In this subsection we present the results from our heterogeneous treatment effects models 5

to 9, defined in the “Estimating Treatment Effect Heterogeneity” in Supplementary Note 2. In

all of the models we first split each Ego i’s network neighborhood into several groups according

to each model’s specifications and specify the endogenous term as the interaction between the

group type and the average running activity of the peers in the group. We instrument for the

endogenous term with an interaction between the group type and the weather variables in order

to identify the causal peer effect β.

Supplementary Table 9 reports the estimates – with standard errors, t-statistics, p-values,

95% confidence intervals, and diagnostic statistics – for the second stage of the 2SLS regression

for the interaction model in Supplementary Equation 5. Surprisingly, friends who are less active

than Ego influence Ego’s running habits more. Specifically, peers with four to eight times less

running activity compared to Ego’s running activity are the most influential on average with an

influence coefficient close to 0.5. On the other hand, an extra kilometer run by a more active

friend has no significant effects on Ego’s running activity. Results of the model are graphically

displayed in Figure 2A of the main manuscript.

Supplementary Table 10 reports the estimates – with standard errors, t-statistics, p-values,

95% confidence intervals, and diagnostic statistics – for the second stage of the 2SLS regres-

sion for the interaction model in Supplementary Equation 6. It is clear that active individuals
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are generally more susceptible to exercise influence, especially when influence is coming from

inactive runners. It is also worth mentioning that in conjunction with the results in Supplemen-

tary Table 9, active friends have no significant influence on non-active runners. Results of the

model are graphically displayed in Figure 2B of the main manuscript.

Supplementary Table 11 reports the estimates – with standard errors, t-statistics, p-values,

95% confidence intervals, and diagnostic statistics – for the second stage of the 2SLS regression

for the interaction model in Supplementary Equation 7. Similar to the results on active and

inactive runners, here we find that inconsistent peers are very influential over consistent runners

and that consistent peers do not influence inconsistent runners. We also find that the influence

coefficient is almost identical when Ego and peers are both either consistent or inconsistent.

Results of the model are graphically displayed in Figure 2C of the main manuscript.

In Supplementary Table 12 we report the estimates – with standard errors, t-statistics, p-

values, 95% confidence intervals, and diagnostic statistics – for the second stage of the 2SLS

regression for the gender interaction model in Supplementary Equation 8. Men tend to be more

influential runners, especially with respect to their influence on other men. However, the influ-

ence coefficient estimates become insignificant when we consider men influencing women. On

the other hand, women exert significant influence on other women and on men. Results of the

model are graphically displayed in Figure 2D of the main manuscript. Finally, in Supplemen-

tary Table 13 we report the estimates along with errors and diagnostic statistics – for the second

stage of the 2SLS regression for the same-gender and cross-gender interaction model in Supple-

mentary Equation 9. We find that same gender influence is significantly larger (t-stat=4.98) than

cross-gender influence. Results of this model are graphically displayed in the inset of Figure 2D

of the main manuscript.
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Structural Theories of Social Contagion

Complex Contagion. The Complex Contagion Theory of behavioral contagion suggests that

the number of behaviorally active friends in one’s Ego network is a significant (non-linear) pre-

dictor of social influence. In Supplementary Table 14 we summarize the first and second stage

coefficients as well as the accompanying identification diagnostic statistics for the 2SLS regres-

sion of the model specified in Supplementary Equation 10. It is clear that the number of Ego’s

friends that are active is a strong predictor of exercise influence. The results are graphically

displayed in Figure 3A of the main manuscript (diamonds) when we use running distance as

the performance indicator and in Supplementary Figure 20 (diamonds) when we use duration

as the running performance indicator.

In Supplementary Table 16 we summarize the first and second stage coefficients as well as

the accompanying diagnostic statistics for the 2SLS regression of the model in Supplementary

Equation 12. The number of Ego’s neighborhood connected components that are running (ac-

tive) is a strong predictor of exercise influence as well. The results are graphically displayed in

Figure 3A of the main manuscript (squares) when we use distance as the running performance

indicator and in Supplementary Figure 19 (squares) when we use duration as the running per-

formance indicator.

In Supplementary Table 15 we report the second stage results for the social influence coef-

ficients β1 and β2. The negative though small β2 estimate suggests that there are diminishing

returns to additional peers’ influence.

Structural Diversity. The Structural Diversity Theory of behavioral contagion suggests

that the number of behaviorally active components in one’s Ego network, rather than the number

of active friends is the main predictor of social influence. In Supplementary Table 17 we report

the results of the first and second stage of the 2SLS methodology (estimates, standard errors

and diagnostic statistics) for the causal effect of the number of active friends and the number of
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connected components on Ego’s running behavior when we include both of them in the same

estimation model (Supplementary Equation 13). Consistent with results found by Ugander et

al (18), we find that the number of running active connected components is a strong positive

predictor of exercise influence while the number of running friends becomes a negative predictor

when controlling for structural diversity. The two values are statistically different (t-stat=15.9).

This is strong evidence for the Structural Diversity theory of exercise contagion. The results

are graphically displayed in Figure 3B of the main manuscript for running distance and in

Supplementary Figure 20 for running duration.

Embeddedness. The Embeddedness Theory of behavioral contagion suggests that the more

mutual friends two people share, the more influential they will be on one another. Supplemen-

tary Table 18 reports the estimates – with standard errors, t-statistics, p-values, 95% confidence

intervals, and diagnostic statistics – for the second stage of the 2SLS regression for the interac-

tion model in Supplementary Equation 14. The results, illustrating the correspondence between

structural emboddedness and influence, are displayed in Figure 3D of the main manuscript for

social influence on run distance and in Supplementary Figure 21 for influence on run duration.

We observe that individuals are statistically significantly more influential on peers with whom

they are embedded, i.e. share common friends (t-stat=2.45). This result is evidence for the Em-

beddedness Theory and is consistent with the empirical evidence described in Aral and Walker

(2014) (21)
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Supplementary Note 4:
Robustness

First Stage Regressions

The first stage regression along with its diagnostic statistics is an important component of the

two stage least square estimator for instrumental variables theory, since it reveals the strength

and suitability of the instruments. It is important to verify that the instruments are good predic-

tors of the endogenous explanatory variable in the first-stage regression. “Weak” instruments

would cause poor predicted values in the first-stage regression and therefore poor estimation in

the second-stage regression. It is therefore important to confirm that the F-statistics of the first

stage are strong. To ensure the instruments are not weak, the Cragg-Donald Wald F statistic

should exceed the critical threshold suggested by Stock and Yogo (19). With their tabulated

values Stock and Yogo first fix the largest relative bias of the two stage least squares estimator

(2SLS) relative to OLS that is acceptable. In this sense the test answers the question: can we

reject the null hypothesis that the maximum relative bias due to weak instruments is 10% (or

5%, etc). In all of the cases of the 2SLS IV regressions we are considering the Cragg-Donald

Wald F exceeds the critical thresholds suggesting that the weather variables we select are strong

instruments. For example, in the diagnostic statistics for our main results in Supplementary

Tables 4 to 7 all of the Cragg-Donald Wald F statistics are in the range between 200 and 500

well above the ∼20 Stock-Yogo weak identification test critical value for the 10% maximum

relative bias due to weak instruments.

Exogeneity

We test for any direct causal relationship between weather changes that Ego’s peers experience

and Ego’s running activity. As we discussed in the sections on model specification, an important
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component of the model is to exclude all links between individuals whose weather patterns are

correlated. In order to investigate if our methodology is reliable, we consider here a simple

model with Ego’s running activity as the dependent variable and as independent variables the

instruments we used for our model estimation Zjt, controlling for all other exogenous factors

and for peer’s running activity, as follows:

Ait = δW p
it + γXp

it + Āpit + θXit + αwi,t+δt + µ1Ai,t−1 + ηj + νt + εit. (15)

In Supplementary Table 19 we report the estimates of δ for the four running indicators (dis-

tance, pace, duration and calories). The non significance of the estimates for δ indicate that

peers’ weather does not correlate with Ego’s running (except through its effect on peer run-

ning), providing evidence of the exogeneity of the instruments.

Non-Independence: Clustering and Standard Errors

The usual assumption in these types of models is that εit is iid (independent and identically

distributed). But this assumption could be violated in many of the cases we consider. A natural

generalization while working on networks is to assume “clustered errors” – that observations

within group u are correlated in some unknown way, inducing correlation in εit within u, but

that groups u and v do not have correlated errors. In the presence of clustered errors, OLS and

IV estimates are both still unbiased but standard errors may be quite wrong, leading to incorrect

inference in a surprisingly high proportion of finite samples.

The optimal way of avoiding such a problem in a network topology would be having a

large number of connected components whose errors are uncorrelated with each other [“Com-

ponents” refers to completely unconnected clusters, while “clusters” (in the Supplementary

Information and in the literature) can be defined with varying levels of connectedness between

and within groups of nodes that make up a cluster. Conceptually, components are a subset of

clusters. Ugander et al use “components” when defining structural diversity, and so we maintain
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the same terminology and definition when testing the structural diversity theory, meaning we

create “components” by taking an ego network, eliminating all ties to ego and then defining the

remaining clusters in that ego network that have no connection to other outside nodes in the

ego network as “components.” We use “clusters” here to deal with the non-independence of our

data: we use a clustering algorithm to find clusters of highly connected nodes (but they are not

completely unconnected from other nodes, only connected to other nodes below a threshold of

connectivity) and treat individuals within those clusters as non-independent for the purposes of

estimating the standard errors in our models.]. However, another common property of socio-

technical systems is that a giant connected component typically accounts for a large fraction

of the network. This is something we observe in our network as well: ∼90% of runners are

concentrated in a giant connected component.

For that reason, we first partition our graph into 15144 communities of average size 7.7

nodes (S.D. = 41), using the classic method of optimal modularity proposed by Newman et

al. (22). A good metric for how independent the clusters in a graph partition are is the fraction

of friends that are within community. In our case, the average over all individuals’ fraction of

friends that are within community is close to 82%. In other words, on average 8 out of 10 friends

are within cluster while 2 of 10 are across clusters. We can achieve this high level of partition

because the running network is quite sparse, which demonstrates another important quality of

this dataset for obtaining reliable estimates of social contagion. All standard errors presented in

Supplementary Tables 4 to 27 reflect clustering with respect to the network communities. While

in most cases clustering of the standard errors increases the 95% confidence intervals, all of our

results remain highly significant.
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Alternative Instrument Design

As an alternative robustness check, we design the instruments in a slightly different, less sophis-

ticated way to make sure our more complex specification is not somehow producing spurious

results. Instead of specifying N (and M) binary indicators for the precipitation (and temperature)

that peers experience and using the Post LASSO method to identify which set of binaries to use

as instruments, here we propose a global design of instruments that are identical across peers.

For each peer we define two simple binary indicators for rain and temperature respectively. For

each individual j on each day t we consider a binary rain indicator rjt that is equal to 1 if the

precipitation that individual j experiences on day t, prjt, is more than a seasonal average prjt,

and 0 otherwise (Supplementary Figure 22A). We compute the seasonal average as the average

precipitation in a two month period, from 30 days before to 30 days after the current day t,

prjt = 1/60
∑t+31

τ=t−30 prjτ . In this way, we account for seasonality as we differentiate 2-inches

of precipitation during a wet winter from 2-inches of precipitation during a dry summer. At

the same time, for each individual, we build a binary indicator for temperature θj,t that is equal

to 1 if the temperature Tj,t that individual j experiences is outside a normal temperature range

(T0, T1)=(35,85)oF and 0 otherwise (Supplementary Figure 22B).

After we establish the exclusion criterion by dropping dyads whose weather is correlated

using the methodology described in “Weather as an Instrument” in Supplementary Note 2, we

define the two variables that will serve as instruments for the average activity of Ego’s friends

in our analysis as the sum of the binaries over the set of unique weather towers (l = 1..cj)

that peers of Ego i are located close to, Rft =
∑cj

l=1 rl,t for the rain and Θft =
∑cj

l=1 θl,t for

temperature respectively. Note that these two instruments by design are expected to negatively

correlate with the running activity of peers. We then use Supplementary Equation 2) to estimate

the causal effect β.

Supplementary Tables 20 to 23 report the estimates–with standard errors, t-statistics, p-
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values, 95% confidence intervals and regression diagnostics–for the first and second stage of the

2SLS regression for the model in Supplementary Equation 2 using Rft and Θft as instruments.

Each Table refers to a different exercise indicator (20: distance, 21: pace, 22: duration and 23:

calories) and the estimates for time-lapsed causal peer effects are indexed by δt =0,1,2. The

standard errors shown are also corrected with respect to clustering. The estimates are graph-

ically displayed in Supplementary Figure 23 (point influence estimates with 95% confidence

intervals) along with the results from the LASSO-based instrument design that we presented in

“First Stage Regressions” in Supplementary Note 4. It is clear from this analysis that our re-

sults are robust to using the above method of designing the instruments and are not significantly

different from the coefficients we estimate using the more sophisticated LASSO method, sug-

gesting that our results of exercise influence are robust with respect to instrument modifications.

Falsification Tests

Falsification Test 1. If our procedure is correctly estimating exercise influence, we would not

expect to be able to predict individuals’ running activity using their friends’ future weather and

running. Here, we test a falsification model using the same instrumental variables technique de-

scribed above to estimate the effect of friends’ future running activity on Ego’s running activity

today. We arbitrarily choose t + 60 days (∼2 months later) as a point in time far enough in the

future where we suspect that friends’ running should not affect Ego’s running today. We then

modify the Ego level model with δt =0 (Supplementary Equation 1) to shift the independent

variable 60 days (∼2 months) into the future:

Ait = βĀpi,t+60 + γXp
it + θXit + αwi,t+δt + µAi,t−1 + ηi + νt + εit. (16)

We then use the instrumental variable method using the weather indicators 60 days afterwards

as an instrument for friends’ activity to predict the exercise influence coefficient β.
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Supplementary Table 24 reports the estimates – with standard errors, t-statistics, p-values,

95% confidence intervals, and diagnostic statistics – for the first and second stage of the 2SLS

regression for our first falsification test. Note that we use exactly the same network that we

use to identify our main results in Supplementary Tables 4 to 7. The estimates from the second

stage regression, β, are not statistically significant and they are much lower in magnitude than

those estimated for the model in Supplementary Equation 1, suggesting the robustness of our

main estimates.

Falsification Test 2. If our results are correct, we also expect that exercise influence should

not exist (β ∼ 0) if we use the wrong social network for identification. Here, we test a falsifi-

cation model where we randomly manipulate the underlying running-buddy network and try to

identify the exercise influence coefficient using the same identification strategy. We randomly

rewire each in the underlying social network with probability 1, making sure that the total num-

ber of links remains unchanged. We then use the model in Supplementary Equation 1 to identify

the exercise influence coefficient.

In Supplementary Tables 25, 26 and 27 we report the estimates along with the diagnostic

statistics for the first and second stage of the 2SLS regression for three realizations of the second

falsification test. Results are also graphically shown in Supplementary Figure 24. It is clear that

by breaking the structure of the real running buddy network we get completely different results

in the second stage and the social influence coefficient is no longer positive and significant.

We check the results for multiple realizations and find that in all cases the social influence

coefficient is near zero and insignificant. These results again suggest that our results are quite

robust.
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Sensitivity Analysis on the Weather Correlation Threshold

As discussed above in the sections on model specification, one procedure we followed was to

exclude all links between individuals whose weather patterns correlate. For our main analysis,

we set a weather correlation threshold of ρc = +0.025 over which we drop all links (i.e. exclude

links in which Ego and Friend experience weather correlation coefficients larger than 0.025).

A question that naturally arises in this context is: how robust are our estimates to variations in

this threshold? In this subsection we examine the sensitivity of our estimates on the weather

correlation threshold choice by reporting estimates for a range of correlation threshold values

between ρc = [0.01, 0.1]. In Supplementary Table 28 we report the estimates from the second

stage regression of in Supplementary Equation 2. We find that within this range of correla-

tion thresholds near zero (0.01 to 0.10) our estimates are relatively insensitive to the choice of

threshold, suggesting that our choice of ρc = 0.025 provides robust estimates.

Compliers and Non-Compliers

We finally analyze the running population to understand who “complies” with shocks from our

instruments and who does not in order to make our generalizations more precise. For each run-

ner, we calculate the faction of runs that happen on a rainy day fi (mean=0.1899, S.D.=0.1294).

We then define a linear model which uses all the available time-invariant characteristics of in-

dividuals (average daily activity, age, gender, height, weight, country and others) to predict

compliance with the weather instrument (not running when it rains) while we control for how

much rain an individual experiences:

fi = αXi + nri + εi, (17)

where nri is the total number of raining days i experiences. In Supplementary Table 29 we

show the results of the above regression. The results show that the more active someone is
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the more likely they are to run through the rain. Also men, younger individuals and those of

normal weight are more likely to run in the rain, while height plays no role. Finally we find

that individuals in the United States, UK, Canada, Germany, Spain, Brazil, France and the

Netherlands are more likely to run on a rainy day than people in Australia, Mexico and Japan.

These results help us more precisely characterize the types of people to whom our results most

directly generalize.
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Supplementary Figures

Supplementary Figure 1: A network visualization of a random 10% sample of the giant con-
nected component of the network displayed using a force-directed graph drawing algorithm.
Also shown are insets showing characteristic motifs of the network structure. The algorithm
situates nodes of the graph in two-dimensional space so that all the edges are of more or less
equal length and there are as few crossing edges as possible. This is achieved by assigning
forces among the set of edges and the set of nodes and then using these forces either to simulate
the motion of the edges and nodes or to minimize their energy (1).
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Supplementary Figure 2: (A) The demographic summary statistics of the∼1.1 million network-
embedded runners by gender, age, country and BMI at the time of registration. (B) The daily
activity measured by the number of runs per day by different demographic categories displayed
as PlotBoxs with demarcations for the minimum, first quartile, median, third quartile, and max-
imum. (C) The average pace per run (with 95% confidence intervals) for different demographic
categories measured in kilometers per minute.
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Supplementary Figure 3: Aggregated daily activity as a function of time (measured in total
number of runs) of the network-embedded runners.

Supplementary Figure 4: The fraction of active runners in United States (number of people
running divided by the total number of runners) for a period of one week.

Supplementary Figure 5: The degree distribution f(k) of the underlying running social network.
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Supplementary Figure 6: The location of the almost 48K weather stations worldwide where
weather data are available for the period of observation. The four countries with the largest
number of weather towers are: the United States (32,643), Australia (7,069), Canada (2256)
and Sweden (823). Even without geographic demarcations, a geographic plot of the weather
stations gives us a well defined world map.

Supplementary Figure 7: The location of the ∼32K weather stations in the contiguous US.
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Supplementary Figure 8: The population distribution in the contiguous United States at the
county level (left) along with the weather tower distribution (right). The correlation coefficient
between the two distributions is ∼0.59, suggesting that the density of weather towers is well
correlated with population density.

Supplementary Figure 9: Illustration of how we assign individuals to weather stations. For each
individual we have their location either through GPS data or through the address they provide
during registration on the website. At the same time we have information about the exact loca-
tion of weather stations. The weather of the closest weather station to an individual is assigned
as the weather the individual experiences. Individuals that are located further than 30Km away
from their closest weather station are excluded since we are unable to precisely identify the
weather they experience (e.g. individual d). The excluded group makes up approximately 3%
of the sample.

48



Supplementary Figure 10: Daily per capita running activity as a function of the daily precipita-
tion (left) and average daily temperature (right) of the 15 largest cities in which these individuals
run in the United States. The plot reveals a monotonic relationship between running and pre-
cipitation on one hand and an inverted-U shaped relationship between running and temperature
on the other.

Supplementary Figure 11: More precipitation is monotonically associated with less running (see
Figure 4C in the main manuscript). On the other hand, the relationship between running and
temperature is non monotonic suggesting that very high and low temperatures are associated
with less exercise activity (see Figure 4C in the main manuscript).
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Supplementary Figure 12: A typical precipitation pattern over the Midwest and south of the
U.S. as well as its temporal evolution over three consecutive days. Dark red colors indicate
large amounts of precipitation.

Supplementary Figure 13: The sample Pearson correlation coefficient between the weather in four
large cities in US (New York, Chicago, San Francisco and Seattle) on day t and any other area in the
contiguous US on the same day are displayed (left panel) next to the correlations of the weather in these
cities on day t with the weather everywhere else in the US one (t vs t + 1), two (t vs t + 2), and three
days (t vs t + 3) later. Dark green colors represent correlations close to 1, light green colors represent
correlations close to 0.1 and white colors represent correlations less than 0.1.
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Supplementary Figure 14: Larger amounts of precipitation the peer experiences, are associated
with lower running activity (A) while the relationship between running activity and temperature
is non monotonic suggesting that very high and very low temperatures are associated with low
exercise activity (B). We design N=12 rain and M=10 temperature binary indicators for the
weather the peers’ experience. For the rain binaries, we divide the range of precipitation i

experiences into N percentiles and we define binaries so that r(0)j,t = (rj,t = 0), r(1)j,t = (prj,t ≤
〈r〉i/20), r(2)j,t = (prj,t ≤ 〈r〉j/10), r(3)j,t = (prj,t ≤ 〈r〉j/5), r(4)j,t = (prj,t ≤ 〈r〉j/4), r(5)j,t =

(prj,t ≤ 〈r〉j/2), r(6)j,t = (prj,t ≤ 〈r〉j), r(7)j,t = (prj,t ≤ 〈r〉j ∗ 1.5), r(8)j,t = (prj,t ≤ 〈r〉j ∗ 2),
r
(9)
j,t = (prj,t ≤ 〈r〉j ∗ 5), r(10)j,t = (prj,t ≤ 〈r〉j ∗ 7), r(11)j,t = (prj,t ≤ 〈r〉j ∗ 10), where
prj,t is the amount of precipitation j experiences on day t and 〈rj〉 is the average amount of
precipitation i experiences for the period of observation. At the same time, for the temperature
binaries, we design the binary indicators in a slightly more complicated way in order to be able
to capture the nonlinear relationship between running and temperature. For each peer we define
the minimum, maximum and average temperature that she/he experiences for the duration of
observation and define the binary indicators so that θ(0)j,t = (θj,t < θj,min + {〈θ〉j − θj,min}/5),
θ
(1)
j,t = (θj,t < θj,min + 2{〈θ〉j − θj,min}/5), θ(2)j,t = (θj,t ≥ θj,min + 3.5{〈θ〉j − θj,min}/5),
θ
(3)
j,t = (θj,t ≥ θj,min + 4{〈θ〉j − θj,min}/5), θ(4)j,t = (θj,t < 〈θ〉j , θ(5)j,t = (θj,t ≥ 〈θ〉j , θ(6)j,t =

(θj,t ≥ θj,max − {θj,max − 〈θ〉j}/5), θ(7)j,t = (θj,t ≥ θj,max − 2{θj,max − 〈θ〉j}/5), θ(8)j,t = (θj,t ≥
θj,max− 3{θj,max− 〈θ〉j}/5), θ(9)j,t = (θj,t ≥ θj,max− 4{θj,max− 〈θ〉j}/5), where θj,max (θj,min)
is the maximum (minimum) and 〈θ〉j is the average temperature that the peer j experiences
throughout the course of observation.
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Supplementary Figure 15: Illustration of the methodology used to extract the training consis-
tency of runners. Periods of consistent activity are defined as those during which no period of
inactivity longer than two weeks exists.

Supplementary Figure 16: Illustration of the methodology used to extract the number of active
connected components a runner (Ego) has at each time. In this particular example an Ego i on
day t has a neighborhood of 6 friends (2 of which are running) and 3 connected components (2
of which are active).
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Supplementary Figure 17: Box plots with the minimum, first quartile, median, third quartile,
and maximum of daily individual running activity, measured in number of runs, as a function
of the number of friends someone has.

Supplementary Figure 18: Meeting the exclusion criterion. For each Ego i we exclude all the links
to peers that share the same or highly correlated weather. Also to design the weather variables that can
potentially serve as instruments for the peers’ running activity we consider only the distinct number of
towers that have different weather. For example, in the above illustration, Ego has five friends in four
different cities. First, we remove links between Ego and the friends that they have in the same city.
Furthermore, in order to design the variables that can serve as instruments, we use the weather of the
three distinct cities in which Ego has peers (city B, city C and city D). The above methodology ensures
that the exclusion criterion is not violated.
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Supplementary Figure 19: (A) The social influence coefficient (measured in minutes) when we con-
sider the number of active friends (diamonds) and the number of active connected components in Ego’s
neighborhood (squares) as the endogenous variables in separate regressions. Full results with diagnostic
statistics are displayed in Supplementary Tables 14, 16

Supplementary Figure 20: The social influence coefficient for running duration (measured in minutes)
when we consider the number of running friends (diamonds) and the number of running components
(squares) in the same regression. Full results and regression diagnostics are displayed in Supplementary
Table 17
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Supplementary Figure 21: The social influence coefficient when we consider duration as the running
performance indicator when the links between Ego and peers are not embedded (left) and in the case
when the links are embedded, i.e. Ego and peers share at least one common friend (right). Full results
are displayed in Supplementary Table 14

.

Supplementary Figure 22: The design of the two weather binary indicators. (A) For each indi-
vidual j on each day twe consider a binary rain indicator rjt that is equal to 1 if the precipitation
individual j experiences on day t, prjt, is more than a seasonal average prjt, and 0 otherwise.
(B) We build a binary indicator for temperature θj,t that is equal to 1 if the temperature Tj,t that
individual j experiences is outside a normal temperature range (T0, T1)=(35,85)oF and 0 other-
wise. By design the two weather indicators are expected to negatively correlate with running
activity.
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Supplementary Figure 23: The social influence coefficients β from the two stage least squares
model (Supplementary Equation 2) for the case in which we use two global binary indicators
for weather (Rft and Θft) as instruments, as well as the coefficients from the 2SLS model in
which we design N+M binary weather indicators and use the LASSO method to identify the
most suitable instruments as described in “First Stage Regressions” in Supplementary Note
4. Results are also displayed, with a full set of statistical diagnostic tests, in Supplementary
Tables 20 to 23.
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Supplementary Figure 24: The social influence coefficient for the four running performance indicators
are shown when we consider the true underlying social network from the running network data (circles)
as well as when we randomly manipulate the social network. We display results from three realizations
of the network randomization in the figure. Full results are displayed in Supplementary Tables 25, 26
and 27
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Supplementary Figure 25: Snapshot from Supplementary Movie 1. The GPS recorded running
footprint of Manhattan during a sunny Saturday afternoon.
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Supplementary Figure 26: Snapshot from Supplementary Movie 2. The GPS recorded running
footprint of Manhattan during a rainy Saturday afternoon.
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Supplementary Tables

demographic data
variable name mean S.D. min max

demographics

age (years) 30.73 8.25 9 89
height (m) 1.73 0.10 1.27 2.29
weight (kg) 76.75 16.26 20.80 138.0

gender
male (bin.) 0.6459 0 1
female (bin.) 0.3535 0 1
undefined (bin.) 0.0006 0 1

country
USA (bin.) 0.4742 0 1
UK (bin.) 0.2877 0 1
Brasil (bin.) 0.0521 0 1
Mexico (bin.) 0.0371 0 1
Canada (bin.) 0.0327 0 1
Japan (bin.) 0.0235 0 1
Spain 0.0184 0 1
other 0.0743 0 1

running activity

distance per run [km] 6.61 4.60 0.1 111
duration per run [min] 44.50 32.17 1.23 421.21
calories per run [cal] 489 373 33 4810
pace per run [km/min] 0.129 0.042 0.001 1.076

Supplementary Table 1: Demographics and running activity data for the 1.1 million individuals
in the running social network.
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weather data
variable name mean S.D. min max
daily precipitation (mm) 40 11 0 179
daily temperature (◦C) 22 8 -43 54.5

Supplementary Table 2: Weather data.

New York NY(t) Chicago IL(t) Columbus OH(t)

New York NY(t) 1 0.02 0.23
Chicago IL(t) 0.02 1 0
Columbus OH(t) 0.23 0 1

Supplementary Table 3: Same day weather correlation coefficients between New York NY,
Chicago IL and Columbus OH.
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Identification Model: Supplementary Equation 2
Fitness Indicator : Daily Distance [km]

Ait Vs. Āpit
Instruments: 1. R(7)

t 2. Θ
(2)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0124 0.0006 22.47 0.000 0.0113 0.0135
Instrument 2 0.0077 0.0003 24.14 0.000 0.0071 0.0083
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.3425 0.0400 8.56 0.000 0.2640 0.4209
Total number of observations N=9,560,804. The Kleibergen-Paap rk LM statistic is 1392 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 335 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 75 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2122 that fails to reject the null hypothesis for valid instruments.

Ai,t+1 Vs. Āpit
Instruments: 1. R(3)

t 2. Θ
(3)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0122 0.0004 28.93 0.000 0.0114 0.0131
Instrument 2 0.0067 0.0002 26.70 0.000 0.0062 0.0072
second stage 95% conf. interval
Ego’ s Activity Ai,t+1 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2143 0.0519 5.12 0.000 0.1284 0.3001
Total number of observations N=10,204,895. The Kleibergen-Paap rk LM statistic is 1901 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 429 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 47 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1992 that fails to reject the null hypothesis for valid instruments.

Ai,t+2 Vs. Āpit
Instruments: 1. R(0)

t 2. Θ
(2)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0113 0.0005 19.47 0.000 0.0102 0.0124
Instrument 2 0.0066 0.0004 16.88 0.000 0.0058 0.0074
second stage 95% conf. interval
Ego’ s Activity Ai,t+2 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.1325 0.0337 3.93 0.000 0.0664 0.1987
Total number of observations N=12,186,406. The Kleibergen-Paap rk LM statistic is 574 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 266 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 29 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1888 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 4: Ego Influence Identification Results (Ego ID fixed effects) – Daily
Distance. Results are displaying in Figure 1 (top-left panel) of the main manuscript.
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Identification Model: Supplementary Equation 2
Fitness Indicator : Daily Pace [km/min]

Ait Vs. Āpit
Instruments: 1. R(3)

t 2. Θ
(3)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0002 0.0000 23.74 0.000 0.0002 0.0002
Instrument 2 0.0001 0.0000 23.74 0.000 -0.0001 -0.0001
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.3412 0.0437 7.80 0.000 0.2555 0.4270
Total number of observations N=9,504,974. The Kleibergen-Paap rk LM statistic is 1285 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 299 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 52 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1432 that fails to reject the null hypothesis for valid instruments.

Ai,t+1 Vs. Āpit
Instruments: 1. R(3)

t 2. Θ
(3)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0002 0.0000 29.22 0.000 -0.0012 -0.0010
Instrument 2 0.0001 0.0000 23.11 0.000 0.0001 0.0001
second stage 95% conf. interval
Ego’ s Activity Ai,t+1 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2398 0.0381 6.00 0.000 0.1822 0.3073
Total number of observations N=10,580,279. The Kleibergen-Paap rk LM statistic is 779 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 366 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 68 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1319 that fails to reject the null hypothesis for valid instruments.

Ai,t+2 Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Friends’ Tot. Rainfall Rf,t -0.0010 0.0000 -21.34 0.000 -0.0010 -0.0009
Friends’ Tot. Temper. Θf,t -0.0001 0.0000 -4.51 0.000 -0.0002 -0.0001
second stage 95% conf. interval
Ego’ s Activity Ai,t+2 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.072 0.03199 2.17 0.000 0.012 0.1358
Total number of observations N=11,988,434. The Kleibergen-Paap rk LM statistic is 458 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 216 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 39 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1222 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 5: Ego Influence Identification Results (Ego ID fixed effects) – Daily
Pace. Results are displaying in Figure 1 (top-right panel) of the main manuscript.



64

Identification Model: Supplementary Equation 2
Fitness Indicator : Daily Duration [min]

Ait Vs. Āpit
Instruments: 1. R(7)

t 2. Θ
(3)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0873 0.0044 19.77 0.000 0.0786 0.0959
Instrument 2 0.0582 0.0021 27.27 0.000 0.0540 0.0624
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2950 0.0438 6.72 0.000 0.2087 0.3804
Total number of observations N=9,560,779. The Kleibergen-Paap rk LM statistic is 560 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 321 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 63 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2177 that fails to reject the null hypothesis for valid instruments.

Ai,t+1 Vs. Āpit
Instruments: 1. R(3)

t 2. Θ
(3)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0872 0.0034 25.42 0.000 0.0805 0.0939
Instrument 2 0.0560 0.0020 27.21 0.000 0.0520 0.0601
second stage 95% conf. interval
Ego’ s Activity Ai,t+1 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2009 0.0377 5.33 0.000 0.1270 0.2749
Total number of observations N=10,204,872. The Kleibergen-Paap rk LM statistic is 729 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 364 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 34 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2311 that fails to reject the null hypothesis for valid instruments

Ai,t+2 Vs. Āpit
Instruments: 1. R(3)

t 2. Θ
(3)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0870 0.0034 24.42 0.000 0.0799 0.0959
Instrument 2 0.0568 0.0020 26.21 0.000 0.0510 0.0612
second stage 95% conf. interval
Ego’ s Activity Ai,t+2 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.1094 0.0345 3.57 0.000 0.0417 0.1771
Total number of observations N=11,922,086. The Kleibergen-Paap rk LM statistic is 497 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 255 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 36 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2009 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 6: Ego Influence Identification Results (Ego ID fixed effects) – Daily
Duration. Results are displaying in Figure 1 (bottom-left panel) of the main manuscript.
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Identification Model: Supplementary Equation 2
Fitness Indicator : Daily Calories Burned [cal]

Ait Vs. Āpit
Instruments: 1. R(7)

t 2. Θ
(3)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.9469 0.0414 22.86 0.000 0.8657 1.0280
Instrument 2 0.5390 0.0197 27.27 0.000 0.5002 0.5777
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.3501 0.0400 8.75 0.000 0.2716 0.4284
Total number of observations N=9,560,256. The Kleibergen-Paap rk LM statistic is 670 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 335 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 79 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1655 that fails to reject the null hypothesis for valid instruments.

Ai,t+1 Vs. Āpit
Instruments: 1. R(3)

t 2. Θ
(3)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.9147 0.0318 28.71 0.000 0.8523 0.9772
Instrument 2 0.5214 0.0191 27.26 0.000 0.4838 0.5588
second stage 95% conf. interval
Ego’ s Activity Ai,t+1 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2244 0.0342 6.56 0.000 0.1573 0.2915
Total number of observations N=10,204,310. The Kleibergen-Paap rk LM statistic is 861 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 430 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 51 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1428 that fails to reject the null hypothesis for valid instruments.

Ai,t+2 Vs. Ai,t

Instruments: 1. R(3)
t 2. Θ

(3)
t

first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.9148 0.0319 26.75 0.000 0.8503 0.9791
Instrument 2 0.5210 0.0193 25.16 0.000 0.4812 0.5605
second stage 95% conf. interval
Ego’ s Activity Ai,t+2 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.1474 0.0348 4.24 0.000 0.0793 0.2157
Total number of observations N=12,109,634. The Kleibergen-Paap rk LM statistic is 620 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 284 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 37 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1215 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 7: Ego Influence Identification Results (Ego ID fixed effects) – Daily
Calories Burned. Results are displaying in Figure 1 (bottom-right panel) of the main
manuscript.
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IV OLS OLS
Ait Vs. Āpit model model overestimate

distance 0.34 (0.04) 0.62 (0.08) 81%
pace 0.34 (0.04) 0.61 (0.08) 78%
duration 0.29 (0.04) 0.53 (0.07) 80%
calories 0.35 (0.04) 0.60 (0.08) 72%

The p-values for all the results in the table are p < 0.001, N==9,560,779 observations.

Supplementary Table 8: The IV estimations are compared with the estimations from the cor-
responding OLS model as described in “Comparison of IV Estimates with an OLS Model” in
Supplementary Note 3
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Identification Model: Supplementary Equation 5
Fitness Indicator : Daily Distance [km]

Instruments: Interactions between R(7)
t and νij = Aj/Ai

second stage results

Ego’ s Activity Ait

95% conf. interval
coefficient std. error t-value P > |t| low high

Aj/Ai ≤ 1/16
Friends’ Activity Āpit 0.3968 0.1493 2.35 0.021 0.0354 0.7771

1/16 < Aj/Ai ≤ 1/16
Friends’ Activity Āpit 0.4452 0.1304 3.41 0.001 0.1896 0.7007

1/8 < Aj/Ai ≤ 1/4
Friends’ Activity Āpit 0.5244 0.0702 7.47 0.000 0.3867 0.6620

1/4 < Aj/Ai ≤ 1/16
Friends’ Activity Āpit 0.2040 0.0554 3.68 0.000 0.0954 0.3125

1/2 < Aj/Ai ≤ 2
Friends’ Activity Āpit 0.11279 0.0314 3.59 0.000 0.0511 0.1743

2 < Aj/Ai ≤ 4
Friends’ Activity Āpit 0.0439 0.0210 2.09 0.037 0.0026 0.0851

4 < Aj/Ai ≤ 8
Friends’ Activity Āpit 0.0177 0.0222 0.80 0.425 -0.0259 0.0613

8 < Aj/Ai ≤ 16
Friends’ Activity Āpit 0.0087 0.0288 0.30 0.761 -0.0476 0.0651

Aj/Ai > 16
Friends’ Activity Āpit 0.0238 0.0507 0.47 0.638 -0.0156 0.2233

Total number of observations N=14,105,729. The Kleibergen-Paap rk LM statistic is 1273 (P = 0.0000) suggesting the
regression is not underidentied. The Cragg-Donald Wald F statistics is 598 which exceeds the critical thresholds
suggested by Stock and Yogo to ensure the instruments are not weak. The Wu-Hausmann F statistics is 121 (P=0.0000)
which suggests that the friend’s activity is endogenous.

Supplementary Table 9: Results of the second stage of the interaction model in Supplementary
Equation 5. The same results are graphically displayed in Figure 2A of the main manuscript.
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Identification Model: Supplementary Equation 6
Fitness Indicator : Daily Distance [km]

Instruments: Interactions between 1.R(7)
t , 2.Θ(2)

t and aci ∈ {0, 1}

second stage results

Ego’ s Activity Ait

95% conf. interval
coefficient std. error t-value P > |t| low high

Ego Active / Friends Inactive
Friends’ Activity Āpit 1.597 0.0518 32.72 0.000 1.4952 1.6986

Ego Active / Friends Active
Friends’ Activity Āpit 0.4859 0.0114 42.44 0.000 0.4635 0.5083

Ego Inactive / Friends Inactive
Friends’ Activity Āpit 0.2386 0.0380 6.27 0.000 0.1640 0.3132

Ego Inactive / Friends Active
Friends’ Activity Āpit 0.1888 0.1921 0.98 0.326 -0.1278 0.5055

Total number of observations N=10,980,058. The Kleibergen-Paap rk LM statistic is 1154 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 521 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 232 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2121 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 10: Results of the second stage of the interaction model in Supplementary
Equation 6. The same results are graphically displayed in Figure 2B of the main manuscript.
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Identification Model: Supplementary Equation 7
Fitness Indicator : Daily Distance [km]

Instruments: Interactions between 1.R(7)
t , 2.Θ(2)

t and ci ∈ {0, 1}

second stage results

Ego’ s Activity Ait

95% conf. interval
coefficient std. error t-value P > |t| low high

Ego Cons. / Friend InCons.
Friends’ Activity Āpit 0.932 0.2194 4.28 0.000 0.595 1.201

Ego InCons. / Friend InCons.
Friends’ Activity Āpit 0.2485 0.0958 4.55 0.000 0.1870 0.4234

Ego Cons. / Friend Cons.
Friends’ Activity Āpit 0.2218 0.0567 8.33 0.000 0.1900 0.2517

Ego InCons. / Friend Cons.
Friends’ Activity Āpit 0.049 0.0679 1.08 0.085 -0.0021 0.0721

Total number of observations N=11,589,142. The Kleibergen-Paap rk LM statistic is 1032 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 544 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 192 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2323 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 11: Results of the second stage of the interaction model in Supplementary
Equation 7. The same results are graphically displayed in Figure 2C of the main manuscript.
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Identification Model: Supplementary Equation 8
Fitness Indicator : Daily Distance [km]

Instruments: Interactions between 1.R(0)
t and gi ∈ {male, female}

second stage results

Ego’ s Activity Ait

95% conf. interval
coefficient std. error t-value P > |t| low high

Ego male / Friends male
Friends’ Activity Āpit 0.3289 0.0518 6.35 0.000 0.2273 0.4304

Ego male / Friends female
Friends’ Activity Āpit 0.1859 0.0460 4.04 0.000 0.0957 0.2760

Ego female / Friends female
Friends’ Activity Āpit 0.1866 0.0538 3.47 0.001 0.0811 0.2922

Ego female / Friends male
Friends’ Activity Āpit -0.0272 0.0669 -0.61 0.484 -0.1085 0.0540

Total number of observations N=11,253,533. The Kleibergen-Paap rk LM statistic is 1739 (P = 0.0000) suggesting the
regression is not underidentied. The Cragg-Donald Wald F statistics is 869 which exceeds the critical thresholds
suggested by Stock and Yogo to ensure the instruments are not weak. The Wu-Hausmann F statistics is 232 (P=0.0000)
which suggests that the friend’s activity is endogenous.

Supplementary Table 12: Results of the second stage of the interaction model in Supplementary
Equation 8. The same results are graphically displayed in Figure 2D of the main manuscript.
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Identification Model: Supplementary Equation 9
Fitness Indicator : Daily Distance [km]

Instruments: Interactions between 1.R(0)
t and sgij ∈ {0, 1}

second stage results

Ego’ s Activity Ait

95% conf. interval
coefficient std. error t-value P > |t| low high

Ego - Friends same-gender
Friends’ Activity Āpit 0.2932 0.0373 7.85 0.000 0.2200 0.3664

Ego - Friends cross-gender
Friends’ Activity Āpit 0.0754 0.0376 2.01 0.045 0.0018 0.1490

Total number of observations N=11,253,533. The Kleibergen-Paap rk LM statistic is 1555 (P = 0.0000) suggesting the
regression is not underidentied. The Cragg-Donald Wald F statistics is 786 which exceeds the critical thresholds
suggested by Stock and Yogo to ensure the instruments are not weak. The Wu-Hausmann F statistics is 213 (P=0.0000)
which suggests that the friend’s activity is endogenous.

Supplementary Table 13: Results of the second stage of the interaction model in Supplementary
Equation 9. The same results are graphically displayed in the inset of Figure 2D in the main
manuscript.
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Identification Model: Supplementary Equation 10

Fitness Indicator: Distance [km]
Instruments: 1. R(0)

t

first stage 95% conf. interval
# of running friends (#FR) coefficient std. error t-value P > |t| low high
Instrument 1 0.0053 0.0001 38.72 0.000 0.0050 0.0056

second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
# of running friends (#FR) 1.0844 0.1277 8.49 0.000 0.8341 1.3347
Total number of observations N=10,472,115. The Kleibergen-Paap rk LM statistic is 2100 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 1100 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments
are not weak. The Wu-Hausmann F statistics is 392 (P=0.0000) which suggests that the FR is endogenous.

Fitness Indicator.: Duration [min]
Instruments: 1. R(0)

t

first stage 95% conf. interval
# of running friends (#FR) coefficient std. error t-value P > |t| low high
Instrument 1 0.0053 0.0001 38.76 0.000 0.0050 0.0056

second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
# of running friends (#FR) 7.929 1.066 7.44 0.000 5.839 10.018
Total number of observations N=5,698,030. The Kleibergen-Paap rk LM statistic is 2200 (P = 0.0000) suggesting the regression is not underidentied
The Cragg-Donald Wald F statistics is 1029 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments
are not weak. The Wu-Hausmann F statistics is 420 (P=0.0000) which suggests that the #FR is endogenous.

Supplementary Table 14: The effect of the number of running friends on the Ego’s activity. The
results for the “Distance” are graphically displayed in figure 3A of the main manuscript.
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Identification Method: Ego Level 2SLS – Ego ID Fixed Effects
Endogenous Variables: # of running friends FR and (# of running friends)2 (FR)2

Instruments: 1. R(7)
t 2. Θ

(2)
t

Fitness Ind.: Distance [km]

second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
# of running friends FR 1.333 0.0652 20.42 0.000 1.205 1.461
(# of running friends)2 (FR)2 -0.0077 0.0012 -6.31 0.000 -0.0101 -0.0053
Total number of observations N=10,674,361. The Kleibergen-Paap rk LM statistic is 15000 (P = 0.0000) suggesting the regression is not underidentied
The Cragg-Donald Wald F statistics is 4938 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments
are not weak. The Wu-Hausmann F statistics is 577 (P=0.0000) which suggests that the friend’s activity is endogenous.

Fitness Ind.: Duration [min]

second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
# of running friends FR 6.040 0.3222 18.74 0.0000 5.409 6.672
(# of running friends)2 (FR)2 -0.0179 0.0060 -2.98 0.003 -0.0296 -0.0061
Total number of observations N=10,645,722. The Kleibergen-Paap rk LM statistic is 14000 (P = 0.0000) suggesting the regression is not underidentied
The Cragg-Donald Wald F statistics is 4835 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments
are not weak. The Wu-Hausmann F statistics is 592 (P=0.0000) which suggests that the friend’s activity is endogenous.

Supplementary Table 15: The effect of the number of running friends (as a single variable) and
its square on the Ego’s activity.
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Identification Model: Supplementary Equation 12

Fitness Ind.: Distance [km]
Instruments: 1. R(0)

t

first stage 95% conf. interval
# of running comp. (#CR) coefficient std. error t-value P > |t| low high
Instrument 1 0.0071 0.0001 68.08 0.000 0.0069 0.0073

second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
# of running comp. (#CR) 0.7982 0.0926 8.61 0.000 0.6165 0.9798
Total number of observations N=10,472,115. The Kleibergen-Paap rk LM statistic is 6971 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 4490 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments
are not weak. The Wu-Hausmann F statistics is 323 (P=0.0000) which suggests that the #CR is endogenous.

Fitness Ind.: Duration [min]
Instruments: 1. R(0)

t

first stage 95% conf. interval
# of running comp. (#CR) coefficient std. error t-value P > |t| low high
Instrument 1 0.0072 0.0002 68.11 0.000 0.0070 0.0074

second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
# of running comp. (#CR) 5.8397 0.7768 7.52 0.000 4.317 7.362
Total number of observations N=10,472,098. The Kleibergen-Paap rk LM statistic is 6813 (P = 0.0000) suggesting the regression is not underidentied
The Cragg-Donald Wald F statistics is 4639 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments
are not weak. The Wu-Hausmann F statistics is 231 (P=0.0000) which suggests that the #CR is endogenous.

Supplementary Table 16: The effect of the number of running connected components on the
Ego’s activity. The results for the “Distance” are graphically displayed in figure 3A of the
main manuscript. The results for the “Duration” are graphically displayed in Supplementary
Figure 19.
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Identification Model: Supplementary Equation 13

Fitness Ind.: Distance [km]
Instruments: 1. R(3)

t 2. Θ
(4)
t

first stage 95% conf. interval
# of running friends (#FR) coefficient std. error t-value P > |t| low high
Instrument 1 0.0059 0.0001 42.67 0.000 0.0056 0.0062
Instrument 2 -0.0105 0.0001 -133.90 0.000 -0.0107 -0.0103

# of running comp. (#CR) coefficient std. error t-value P > |t| low high
Instrument 1 0.0077 0.0001 72.91 0.000 -0.0075 -0.0079
Instrument 2 -0.0058 0.0001 -97.12 0.000 -0.060 -0.0057

second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
# of running friends(#FR) -1.288 0.1053 -12.23 0.000 -1.495 -1.082
# of running comp. (#CR) 1.749 0.1587 11.02 0.000 1.4386 2.060
Total number of observations N=9,920,398. The Kleibergen-Paap rk LM statistic is 888 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 444 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments
are not weak. The Wu-Hausmann F statistics is 114 (P=0.0000) which suggests that the #FR and #CR are endogenous.

Fitness Ind.: Duration [min]
Instruments: 1. R(3)

t 2. Θ
(4)
t

first stage 95% conf. interval
# of running friends (#FR) coefficient std. error t-value P > |t| low high
Instrument 1 0.0059 0.0001 42.72 0.000 0.0056 0.0061
Instrument 2 -0.0105 0.0001 -133.87 0.000 -0.0107 -0.0103

# of running comp. (#CR) coefficient std. error t-value P > |t| low high
Instrument 1 0.0077 0.0001 -72.95 0.000 0.0075 0.0079
Instrument 2 -0.0058 0.0001 -97.09 0.000 -0.0060 -0.0057

second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
# of running friends (#FR) -10.77 0.8844 -12.17 0.000 -12.50 -9.032
# of running comp. (#CR) 14.19 1.3329 10.65 0.000 11.57 16.80
Total number of observations N=9,920,382. The Kleibergen-Paap rk LM statistic is 901 (P = 0.0000) suggesting the regression is not underidentied
The Cragg-Donald Wald F statistics is 550 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments
are not weak. The Wu-Hausmann F statistics is 92 (P=0.0000) which suggests that the #FR and #CR are endogenous.

Supplementary Table 17: The effect of the number of running friends (as a single variable) and
the number of running connected components on the Ego’s activity. Results for the “Distance”
display in the Figure 3B of the main manuscript while the result for the running “duration”
display in Supplementary Figure 20.
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Identification Model: Supplementary Equation 14
Instruments: Interactions between 1.R(7)

t , 2.Θ(2)
t and eij ∈ {0, 1}

Fitness Ind.: Distance [km]

second stage results

Ego’ s Activity Ait

95% conf. interval
coefficient std. error t-value P > |t| low high

Ego - Friends (embedded)
Friends’ Activity Āpit 0.5616 0.1620 4.04 0.000 0.2539 0.8593

Ego - Friends (non-embedded)
Friends’ Activity Āpit 0.1777 0.02189 8.12 0.000 0.1349 0.2206

Total number of observations N=1,500,123/10,733,162 (embedded/nonembedded). The Kleibergen-Paap rk LM statistic is 980/1435 (P = 0.0000) suggesting
the regression is not underidentied. The Cragg-Donald Wald F statistics is 234/786 which exceeds the critical thresholds suggested by Stock and Yogo
to ensure the instruments are not weak. The Wu-Hausmann F statistics is 39/84 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1321/0.2123 that fails to reject the null hypothesis for valid instruments.

Fitness Ind.: Duration [min]

second stage results

Ego’ s Activity Ait

95% conf. interval
coefficient std. error t-value P > |t| low high

Ego - Friends (embedded)
Friends’ Activity Āpit 0.3525 0.1688 2.31 0.006 0.1083 0.6234

Ego - Friends (non-embedded)
Friends’ Activity Āpit 0.1993 0.0244 8.17 0.000 0.1515 0.2472

Total number of observations N=1,497,322/10,733,100 (embedded/nonembedded). The Kleibergen-Paap rk LM statistic is 711/1682 (P = 0.0000) suggesting
the regression is not underidentied. The Cragg-Donald Wald F statistics is 287/841 which exceeds the critical thresholds suggested by Stock and Yogo
to ensure the instruments are not weak. The Wu-Hausmann F statistics is 29/66 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1349/0.2088 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 18: Results of the second stage of the interaction model in Supplemen-
tary Equation 14. The same results are graphically displayed in the inset of Figure 3C in the
main manuscript for the running distance and in the Supplementary Figure 21 for the running
duration.
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Exogeneity Test
Identification Model: Supplementary Equation 15

Fitness Ind.: Distance [km] Instruments: 1.R(7)
t , 2.Θ(2)

t

95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Instrument 1 0.0007 0.0008 1.01 0.171 -0.0002 0.0016
Instrument 2 0.0004 0.0005 0.89 0.371 -0.0005 0.0014
Total number of observations N=9,588,231.

Fitness Ind.: Pace [km/min] Instruments: 1.R(3)
t , 2.Θ(3)

t

95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Instrument 1 0.0001 0.0000 1.29 0.109 -0.0000 0.0001
Instrument 2 -0.0000 0.0000 -0.13 0.900 -0.0000 0.0000
Total number of observations N=9,592,634.

Fitness Ind.: Duration [min] Instruments: 1.R(7)
t , 2.Θ(3)

t

95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Instrument 1 0.0158 0.0196 1.43 0.090 -0.0055 0.0356
Instrument 2 0.0015 0.0036 0.43 0.670 -0.0055 0.0086
Total number of observations N=9,596,778.

Fitness Ind.: calories [cal] Instruments: 1.R(7)
t , 2.Θ(3)

t

95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Instrument 1 0.0222 0.0300 0.88 0.136 -0.0277 0.0700
Instrument 2 0.01534 0.0324 0.47 0.636 -0.0481 0.0788
Total number of observations N=9,596,404.

Supplementary Table 19: Instrument exogeneity test using the structural model of Supplemen-
tary Equation 15.
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Identification Model: Supplementary Equation 2
Fitness Indicator : Daily Distance [km]

Instruments: 1. Rft, 2. Θft.

Ait Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -0.0858 0.0036 -23.81 0.000 -0.0928 -0.0787
Instrument 2 -0.0473 0.0030 -15.88 0.000 -0.0532 -0.0415
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.3140 0.0343 7.70 0.000 0.2468 0.3912
Total number of observations N=9,560,804. The Kleibergen-Paap rk LM statistic is 771 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 386 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 59 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2517 that fails to reject the null hypothesis for valid instruments.

Ai,t+1 Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -0.0795 0.0036 -22.14 0.000 -0.0865 -0.0724
Instrument 2 -0.0413 0.0030 -13.94 0.000 -0.0471 -0.0355
second stage 95% conf. interval
Ego’ s Activity Ai,t+1 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2092 0.0329 5.44 0.000 0.1447 0.2738
Total number of observations N=10,698,170. The Kleibergen-Paap rk LM statistic is 644 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 298 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 47 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2177 that fails to reject the null hypothesis for valid instruments.

Ai,t+2 Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -0.0752 0.0036 -20.99 0.000 -0.0822 -0.0682
Instrument 2 -0.0382 0.0030 -12.86 0.000 -0.0441 -0.0324
second stage 95% conf. interval
Ego’ s Activity Ai,t+2 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.1525 0.0337 3.93 0.000 0.0864 0.2187
Total number of observations N=12,695,085. The Kleibergen-Paap rk LM statistic is 574 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 266 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 29 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1788 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 20: Ego Influence Identification Results (Ego ID fixed effects) – Daily
Running Distance. Instruments are designed as described in “Alternative Instrument Design” in
Supplementary Note 4. Results are displaying in Supplementary Figure 23 (top-left panel).
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Identification Model: Supplementary Equation 2
Fitness Indicator : Daily Pace [km/min]

Instruments: 1. Rft, 2. Θft.

Ait Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -0.0012 0.0000 -27.71 0.000 -0.0013 -0.0011
Instrument 2 -0.0003 0.0000 -7.17 0.000 -0.0004 -0.0002
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.3390 0.0338 8.88 0.000 0.2726 0.4053
Total number of observations N=9,700,135. The Kleibergen-Paap rk LM statistic is 644 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 305 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 72 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2145 that fails to reject the null hypothesis for valid instruments.

Ai,t+1 Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -0.0011 0.0000 -23.46 0.000 -0.0012 -0.0010
Instrument 2 -0.0002 0.0000 -5.92 0.000 -0.0003 -0.0001
second stage 95% conf. interval
Ego’ s Activity Ai,t+1 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.1434 0.0317 3.88 0.000 0.0813 0.2055
Total number of observations N=10,698,170. The Kleibergen-Paap rk LM statistic is 836 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 230 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 57 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1876 that fails to reject the null hypothesis for valid instruments.

Ai,t+2 Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -0.0010 0.0000 -21.34 0.000 -0.0010 -0.0009
Instrument 2 -0.0001 0.0000 -4.51 0.000 -0.0002 -0.0001
second stage 95% conf. interval
Ego’ s Activity Ai,t+2 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.072 0.03199 2.17 0.000 0.012 0.1358
Total number of observations N=12,707,505. The Kleibergen-Paap rk LM statistic is 458 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 216 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 39 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1471 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 21: Ego Influence Identification Results (Ego ID fixed effects) – Daily
Running Pace. Instruments are designed as described in “Alternative Instrument Design” in
Supplementary Note 4. Results are displaying in Supplementary Figure 23 (top-right panel).
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Identification Model: Supplementary Equation 2
Fitness Indicator : Daily Duration [min]

Instruments: 1. Rft, 2. Θft.

Ait Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -0.4300 0.0169 -25.39 0.000 -0.4632 -0.3968
Instrument 2 -0.1923 0.0142 -13.52 0.000 -0.2202 -0.1645
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2950 0.0335 8.80 0.000 0.2293 0.3607
Total number of observations N=9,637,236. The Kleibergen-Paap rk LM statistic is 795 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 407 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 63 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2497 that fails to reject the null hypothesis for valid instruments.

Ai,t+1 Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -0.3775 0.0168 -22.48 0.000 -0.4104 -0.3446
Instrument 2 -0.1458 0.0140 -10.41 0.000 -0.1733 -0.1184
second stage 95% conf. interval
Ego’ s Activity Ai,t+1 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2274 0.0338 6.73 0.000 0.1612 0.2935
Total number of observations N=10,628,895. The Kleibergen-Paap rk LM statistic is 590 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 298 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 51 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2077 that fails to reject the null hypothesis for valid instruments.

Ai,t+2 Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -0.3502 0.0168 -20.91 0.000 -0.3831 -0.3174
Instrument 2 -0.1232 0.0140 -8.79 0.000 -0.1507 -0.0957
second stage 95% conf. interval
Ego’ s Activity Ai,t+2 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.1094 0.0345 3.57 0.000 0.0417 0.1771
Total number of observations N=12,622,086. The Kleibergen-Paap rk LM statistic is 497 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 255 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 36 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1665 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 22: Ego Influence Identification Results (Ego ID fixed effects) – Daily
Running Duration. Instruments are designed as described in “Alternative Instrument Design” in
Supplementary Note 4. Results are displaying in Supplementary Figure 23 (bottom-left panel).



81

Identification Model: Supplementary Equation 2
Fitness Indicator : Daily Calories burned [cal]

Instruments: 1. Rft, 2. Θft.

Ait Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -4.964 0.2013 -24.66 0.000 -5.359 -4.570
Instrument 2 -2.761 0.1669 -16.54 0.000 -3.088 -2.434
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2957 0.0367 8.62 0.000 0.2238 0.3676
Total number of observations N=9,739,876. The Kleibergen-Paap rk LM statistic is 834 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 383 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 93 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2001 that fails to reject the null hypothesis for valid instruments.

Ai,t+1 Vs. Āpit
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -4.583 0.2002 -22.88 0.000 -4.975 -4.190
Instrument 2 -2.390 0.1652 -14.47 0.000 -2.714 -2.066
second stage 95% conf. interval
Ego’ s Activity Ai,t+1 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.2080 0.0339 6.13 0.000 0.1415 0.2745
Total number of observations N=10,700,294. The Kleibergen-Paap rk LM statistic is 693 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 318 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 51 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1743 that fails to reject the null hypothesis for valid instruments.

Ai,t+2 Vs. Ai,t
first stage 95% conf. interval
Friends’ Av. Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 -4.362 0.2002 -21.79 0.000 -4.754 -3.970
Instrument 2 -2.215 0.1660 -13.35 0.000 -2.540 -1.890
second stage 95% conf. interval
Ego’ s Activity Ai,t+2 coefficient std. error t-value P > |t| low high
Friends’ Av. Activity Āpit 0.1474 0.0348 4.24 0.000 0.0793 0.2157
Total number of observations N=12,709,634. The Kleibergen-Paap rk LM statistic is 620 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 284 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 37 (P=0.000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1314 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 23: Ego Influence Identification Results (Ego ID fixed effects) – Daily
Calories Burned. Instruments are designed as described in “Alternative Instrument Design” in
Supplementary Note 4. Results are displaying in Figure 23 (bottom-right panel).
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Falsification Test 1
Identification Model: Supplementary Equation 16 Instruments: 1.R(3)

t , 2.Θ(3)
t+60

Fitness Ind.: Distance [km]
first stage 95% conf. interval
Friends’ Activity 〈At+60〉j coefficient std. error t-value P > |t| low high
Instrument 1 0.0118 0.0005 24.14 0.000 0.0108 0.0127
Instrument 2 0.0059 0.0002 25.20 0.000 0.0055 0.0063
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity 〈At+60〉j 0.0923 0.0680 1.36 0.175 -0.0410 0.2254
Total number of observations N=7,831,310. The Kleibergen-Paap rk LM statistic is 1517 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 313 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak.

Fitness Ind.: Pace [km/min]
first stage 95% conf. interval
Friends’ Activity 〈At+60〉j coefficient std. error t-value P > |t| low high
Instrument 1 0.0002 0.0000 28.02 0.000 0.0002 0.0002
Instrument 2 0.0001 0.0000 21.49 0.000 0.0001 0.0001
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity 〈At+60〉j 0.1100 0.0611 1.80 0.072 -0.0099 0.2299
Total number of observations N=7,802,150. The Kleibergen-Paap rk LM statistic is 1510 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 323 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak.

Fitness Ind.: Duration [min]
first stage 95% conf. interval
Friends’ Activity 〈At+60〉j coefficient std. error t-value P > |t| low high
Instrument 1 0.0802 0.0040 19.99 0.000 0.0724 0.0881
Instrument 2 0.0471 0.0018 24.98 0.000 0.04340 0.0508
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity 〈At+60〉j 0.0234 0.0767 0.31 0.760 -0.1269 0.1738
Total number of observations N=7,831,298. The Kleibergen-Paap rk LM statistic is 1246 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 244 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak.

Fitness Ind.: calories [cal]
first stage 95% conf. interval
Friends’ Activity 〈At+60〉j coefficient std. error t-value P > |t| low high
Instrument 1 0.8778 0.0367 23.90 0.000 0.8058 0.9497
Instrument 2 0.4509 0.0179 25.21 0.000 0.4159 0.4860
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity 〈At+60〉j 0.1224 0.0689 1.78 0.076 -0.0127 0.2575
Total number of observations N=7,831,007. The Kleibergen-Paap rk LM statistic is 1523 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 311 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak.

Supplementary Table 24: Ego Influence Identification Results (Ego ID fixed effects) for the
Falsification Test 1 described in Supplementary Equation 16.
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Falsification Test 2 / Realization 1
Identification Model: Supplementary Equation 2 with manipulated social network

Fitness Ind.: Distance [km] Instruments: 1.R(7)
t , 2.Θ(2)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0147 0.0012 12.25 0.000 0.0123699 0.0170
Instrument 2 0.0205 0.0011 18.48 0.000 0.0183438 0.02269
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0164 0.0484 0.34 0.735 -0.0784 0.1112
Total number of observations N=6,998,292. The Kleibergen-Paap rk LM statistic is 683 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 291 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Fitness Ind.: Pace [km/min] Instruments: 1.R(3)
t , 2.Θ(3)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0003 0.0000 15.02 0.000 0.0003 0.0003
Instrument 2 0.0004 0.0000 24.44 0.000 0.0004 0.0005
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0360 0.0378 0.95 0.342 -0.0382 0.1102
Total number of observations N=7,802,150. The Kleibergen-Paap rk LM statistic is 1012 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 459 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Fitness Ind.: Duration [min] Instruments: 1.R(7)
t , 2.Θ(3)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.10123 0.0098 10.27 0.000 0.0819 0.1205
Instrument 2 0.1559 0.0089 17.36 0.000 0.1383 0.1735
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0480 0.0509 0.94 0.345 -0.05178 0.1479
Total number of observations N=6,998,256. The Kleibergen-Paap rk LM statistic is 505 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 227 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Fitness Ind.: calories [cal] Instruments: 1.R(7)
t , 2.Θ(3)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 1.067 0.0898 11.87 0.000 0.8906 1.2422
Instrument 2 1.609 0.08197 19.63 0.000 1.448 1.769
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0881 0.0458 1.92 0.055 -0.0017 0.1781
Total number of observations N=6,998,031. The Kleibergen-Paap rk LM statistic is 601 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 300 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Supplementary Table 25: Ego Influence Identification Results (Ego ID fixed effects) for the 1st

realization of the Falsification Test 2 using the structural model of Supplementary Equation 2
with randomly manipulated social network.
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Falsification Test 2 / Realization 2
Identification Model: Supplementary Equation 2 with manipulated social network

Fitness Ind.: Distance [km] Instruments: 1.R(7)
t , 2.Θ(2)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0126 0.0012 10.49 0.000 0.0102 0.0149
Instrument 2 0.0212 0.0010 19.31 0.000 0.0190 0.02336
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0389 0.0449 0.87 0.386 -0.0490 0.1270
Total number of observations N=6,947,017. The Kleibergen-Paap rk LM statistic is 619 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 277 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Fitness Ind.: Pace [km/min] Instruments: 1.R(3)
t , 2.Θ(3)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0003 0.0000 17.48 0.000 0.0002 0.0003
Instrument 2 0.0004 0.0000 22.92 0.000 0.0003 0.0004
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0669 0.0348 1.92 0.055 -0.0014 0.1353
Total number of observations N=6,910,386. The Kleibergen-Paap rk LM statistic is 1035 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 469 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Fitness Ind.: Duration [min] Instruments: 1.R(7)
t , 2.Θ(3)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0956 0.0099 9.65 0.000 0.0762 0.1150
Instrument 2 0.1635 0.0089 18.25 0.000 0.1459 0.1811
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0706 0.0485 1.45 0.146 -0.0245 0.1658
Total number of observations N=6,946,978. The Kleibergen-Paap rk LM statistic is 522 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 236 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Fitness Ind.: calories [cal] Instruments: 1.R(7)
t , 2.Θ(3)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 1.067 0.0898 11.87 0.000 0.8906 1.2422
Instrument 2 1.609 0.08197 19.63 0.000 1.448 1.769
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0708 7 0.0446 1.59 0.113 -0.0166 0.1584
Total number of observations N=6,946,752. The Kleibergen-Paap rk LM statistic is 619 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 279 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Supplementary Table 26: Ego Influence Identification Results (Ego ID fixed effects) for the 2nd

realization of the Falsification Test 2 using the structural model of Supplementary Equation 2
with randomly manipulated social network.
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Falsification Test 2 / Realization 3
Identification Model: Supplementary Equation 2 with manipulated social network

Fitness Ind.: Distance [km] Instruments: 1.R(7)
t , 2.Θ(2)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0145 0.0012 11.90 0.000 0.0121 0.0169
Instrument 2 0.0216 0.0011 19.44 0.000 0.0195 0.0238
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0503 0.0422 1.19 0.232 -0.03229 0.1330
Total number of observations N=6,913,218. The Kleibergen-Paap rk LM statistic is 678 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 303 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Fitness Ind.: Pace [km/min] Instruments: 1.R(3)
t , 2.Θ(3)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.0003 0.0000 15.29 0.000 0.0003 0.0003
Instrument 2 0.0004 0.0000 22.72 0.000 0.0003 0.0004
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0082 0.0362 0.23 0.820 -0.0628 0.0793
Total number of observations N=6,876,408. The Kleibergen-Paap rk LM statistic is 932 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 423 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Fitness Ind.: Duration [min] Instruments: 1.R(7)
t , 2.Θ(3)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 0.1052 0.0101 10.34 0.000 0.0852 0.1251
Instrument 2 0.1575 0.0091 17.31 0.000 0.1396 0.1753
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0772 0.0486 1.59 0.112 -0.01808 0.1726
Total number of observations N=6,913,176. The Kleibergen-Paap rk LM statistic is 502 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 288 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Fitness Ind.: calories [cal] Instruments: 1.R(7)
t , 2.Θ(3)

t

first stage 95% conf. interval
Friends’ Activity Āpit coefficient std. error t-value P > |t| low high
Instrument 1 1.069 0.0914 11.69 0.000 0.8900 1.248
Instrument 2 1.674 0.0823 20.33 0.000 1.512 1.835
second stage 95% conf. interval
Ego’ s Activity Ait coefficient std. error t-value P > |t| low high
Friends’ Activity Āpit 0.0495 0.0419 1.18 0.237 -0.0325 0.1317
Total number of observations N=6,912,943. The Kleibergen-Paap rk LM statistic is 690 (P = 0.0000) suggesting the regression is not underidentied.
The Cragg-Donald Wald F statistics is 311 which exceeds the critical thresholds suggested by Stock and Yogo to ensure the instruments are not weak.

Supplementary Table 27: Ego Influence Identification Results (Ego ID fixed effects) for the 3rd

realization of the Falsification Test 2 using the structural model of Supplementary Equation 2
with randomly manipulated social network.
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Identification Model: Supplementary Equation 2
Fitness Indicator : Daily Distance [km] Instruments: 1. R(7)

t 2. Θ
(2)
t

second stage results
Ego’ s Activity Ait 95% conf. interval

coefficient std. error t-value P > |t| low high

ρc = 0.001
Friends’ Activity Āpit 0.3424 0.0402 8.09 0.000 0.2607 0.4229
Total number of observations N=8,091,100. The Kleibergen-Paap rk LM statistic is 1144 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 329 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 69 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.4199 that fails to reject the null hypothesis for valid instruments.

ρc = 0.010
Friends’ Activity Āpit 0.3423 0.0402 8.49 0.000 0.2638 0.4208
Total number of observations N=8,990,771. The Kleibergen-Paap rk LM statistic is 1370 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 335 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 121 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.3387 that fails to reject the null hypothesis for valid instruments.

ρc = 0.020
Friends’ Activity Āpit 0.3425 0.0400 8.56 0.000 0.2640 0.4209
Total number of observations N=9,111,810. The Kleibergen-Paap rk LM statistic is 1383 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 331 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 71 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2621 that fails to reject the null hypothesis for valid instruments.

ρc = 0.025
Friends’ Activity Āpit 0.3425 0.0400 8.56 0.000 0.2640 0.4209
Total number of observations N=9,560,804. The Kleibergen-Paap rk LM statistic is 1392 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 335 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 75 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.2122 that fails to reject the null hypothesis for valid instruments.

ρc = 0.030
Friends’ Activity Āpit 0.3426 0.0402 8.54 0.000 0.2640 0.4211
Total number of observations N=10,105,777. The Kleibergen-Paap rk LM statistic is 1311 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 333 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 76 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1829 that fails to reject the null hypothesis for valid instruments.

ρc = 0.040
Friends’ Activity Āpit 0.3430 0.0421 8.14 0.000 0.2610 0.4250
Total number of observations N=12,105,729. The Kleibergen-Paap rk LM statistic is 1273 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 322 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 68 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.1315 that fails to reject the null hypothesis for valid instruments.

ρc = 0.100
Friends’ Activity Āpit 0.3510 0.0429 7.99 0.000 0.2560 0.4470
Total number of observations N=14,223,129. The Kleibergen-Paap rk LM statistic is 1373 (P = 0.0000) suggesting the regression is not
underidentied. The Cragg-Donald Wald F statistics is 311 which exceeds the critical thresholds suggested by Stock and Yogo to ensure
the instruments are not weak. The Wu-Hausmann F statistics is 69 (P=0.0000) which suggests that the friend’s activity is endogenous.
The Hansen overidentification restriction test gives p-value equal to P=0.0822 that fails to reject the null hypothesis for valid instruments.

Supplementary Table 28: Results of the second stage of the model in Supplementary Equation 2
when we consider different weather correlation thresholds.
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95% conf. interval
coefficient std. error t-value P > |t| low high

total num. of raining days 0.9937 0.0020 501.15 0.000 0.9898 0.9976
average daily activity 0.0433 0.0026 16.38 0.000 0.0381 0.0485

gender

male
female -0.0042 0.0005 -8.02 0.000 -0.0052 -0.0032

age -0.0002 0.0000 -16.16 0.000 -0.0002 -0.0002

height -8.67e-07 4.07e-06 -0.21 0.831 -8.85e-06 7.12e-06

weight -6.73e-05 1.22e-05 -5.54 0.000 -9.11e-05 -4.35e-05

country

other country
USA 0.0149 0.0006 23.75 0.000 0.0136 0.0161
UK 0.0197 0.0011 18.16 0.000 0.0176 0.0219
Japan -0.0140 0.0015 -9.33 0.000 -0.0169 -0.0110
Canada 0.0085 0.0015 5.77 0.000 0.0056 0.0114
Germany 0.0141 0.0016 8.56 0.000 0.0109 0.0173
Spain 0.0399 0.0015 25.85 0.000 0.0369 0.0430
Brasil 0.0555 0.0014 39.02 0.000 0.0527 0.0583
Australia -0.0057 0.0017 -3.35 0.001 -0.0091 -0.0023
Mexico -0.0070 0.0012 -5.63 0.000 -0.0095 -0.0046
Netherlands 0.0163 0.0019 8.36 0.000 0.0125 0.0202
France 0.0559 0.0017 32.23 0.000 0.0525 0.0593

device

other
wrist device -0.0033 0.0006 -5.16 0.000 -0.0045 -0.0020
pedometer 0.0056 0.0010 5.45 0.000 0.0036 0.0077
application 1 0.0054 0.0023 2.36 0.018 0.0009 0.0099
application 2 0.0030 0.0008 3.58 0.000 0.0013 0.0046

Supplementary Table 29: The effect of the different time independent characteristics of individ-
uals on the fraction of runs taken during a rainy day f .




