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Abstract

Cryptographically strong functions can be used to pre-
serve privacy of text content. For example, one way func-
tions have been construed as random functions on their in-
puts. Given this, it is reasonable to ask if a one way function
can still preserve some “property” of its inputs. Specifi-
cally, is it possible to perform some measurement on the im-
age on a one way function that is correlated with the same
measurement on the pre-image of the function? In this pa-
per we show that this is indeed possible. If the measure-
ment function “throws away” enough entropy it will still be
possible to perform the correlated measurement. Thus it is
possible to analyze properties of text while still providing
security and privacy for its content.

1. Introduction

A function h(x) is said to be one way [1] on its preim-
age if the following two properties hold: (a) There exists
a polynomial time algorithm that computes h(x) from x,
except perhaps for a negligible subset of the preimage; (b)
For every probabilistic polynomial time (PPT) algorithm A
that acts on the image of h(x), given y in that image, A can
compute a preimage of y with at most negligible probabil-
ity, namely

Pr[h(A(y)) = y] < ε(‖A(y)‖)

where ‖x‖ denotes the length of x. Condition (a) is the con-
dition of being easy to compute, while condition (b) is the
condition of being hard to invert. Note that while one way
functions are widely believed to exist, there is no example
of a function that has been proved to be one way.

A special category of one way functions of particular in-
terest are hash functions. A hash function is a function that
has two additional properties. First, a hash function is a
compression function. If D and R denote the preimage and
image of a hash functionH , respectively, then ‖D‖ < ‖R‖.
In addition, a hash function also has the property of colli-
sion resistance. A function is collision resistant if it is hard
to find x and x′ (with x 6= x′) such that (H(x) = H(x′).
Here “hardness” is interpreted to mean that no PPT algo-
rithm exists.

Let us now introduce several new definitions. Suppose
f is a function defined on the preimage D of a hash func-
tion H , such that f :D → Rf . (We assume without loss
of generality that the preimage of f and the preimage of H
coincide.) Suppose further that g is a function defined on
the image RH of the function H , such that g:R → Rg . A
function p is said to be a property of the hash function H if
p(f(x)) is approximately equal to g(H(x)) for a large frac-
tion ofD (these notions will be made precise momentarily).
Note that it is not required that the preimage of p correspond
exactly to Rf , nor that its image exactly correspond to Rg .
It suffices if the preimage and image of p are supersets of
Rf and Rg , respectively.

The notion of approximate equality means that the in-
equality

|(p(f(x))− g(H(x))| < ε

holds, except with negligible probability. This inequality
can best be viewed in light of the following approximately
commutative diagram:
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If E is an ensemble of values in the preimage of two
functions f1 and f2 then we define the normalized distance
between f1 and f2 over E as

nd(f1, f2, E) =
∑
x∈E

|(f1(x)− f2(x)|/‖E‖

This quantity, of course, depends on the choice of the en-
semble E. If we compute the maximum value of the nor-
malized distance over all ensembles of size S = ‖E‖ we
can write nd(f1, f2, S) = maxS=‖E‖ nd(f1, f2, E). If for
any ε we can find a lower bound Smin such that for all
S > Smin the inequality nd(f1, f2, S) < ε holds, then
we say that f1 is an approximant of f2 (and, symmetrically,
that f2 is an approximant of f1).

2. p-Security for One Way Functions

If p(f) is an approximant of g(H) then we call the triplet
〈f, g, p〉 a property of the hash function H . We will call f
and g the measurement functions of this property, and p the
correlation function of the property. In an informal sense,
f is measuring something about the preimage of H , while
g is measuring something about the image of H . The cor-
relation function p provides a method for (approximately)
computing the measurement on the image, given a corre-
sponding measurement on the preimage.

A hash function (or, more generally a one way func-
tion) H is said to be p-secure with respect to the prop-
erty 〈f, g, p〉 if no PPT algorithm Ap can invert H . It is
implied that the algorithm Ap is allowed to use f , g, and
p, so that p-security of H in the presence of a property is
a stronger statement than the statement that the function
H is one way. Before stating the main theorem regard-
ing p-security, it is worthwhile to consider two informative
examples. Suppose that f(x) = ‖x‖, g(x) = ‖x‖ and
p(x) = kx with k = ‖R‖/‖D‖. If we assume (without
loss of generality, see [2]) that H is length-regular, then
g(H(x)) = p(f(x)) identically. In this case the property
〈f, g, p〉 does not provide any new information aboutH and
the non-existence of Ap is immediate from the fact that H
is one way. As a second example, suppose that p is PPT
invertible by an algorithm A1 and that f is PPT invertible
by an algorithm A2. Then for any value x which satisfies
g(H(x)) = p(f(x)) we can recover a preimage of y by
computing x = A2(A1(g(y))). These two examples should
clearly illustrate that the degree to which p-security for a
property 〈f, g, p〉 of H holds depends critically on f , g and
p. It would be highly desirable if we could develop a char-
acterization for 〈f, g, p〉 such that there was a proof of se-
curity, e.g. that the existence of correlated measurements
on the preimage and image did not have any adverse impact
on the privacy provided by the application of the one way

functionH . In fact we will prove a theorem that says, infor-
mally, that if the function f loses enough entropy, privacy
will be preserved even for arbitrary g and p.

Theorem 1 If H is a one way function, 〈f, g, p〉 is a prop-
erty ofH , and f is one way, thenH is p-secure with respect
to 〈f, g, p〉 for any g and p.

Proof. Consider the most unfavorable case, that is con-
sider the case where p is polynomial-time invertible and g is
arbitrary. Write y = H(x) and z = g(y) = g(H(x)). Then
by assumption we can compute w = p−1(z) in polynomial
time. If there existed a probabilistic polynomial time algo-
rithm A that inverted H , we could (except for a negligible
subset) compute x in polynomial time, given H(x). But
then x would be a preimage of w with respect to the func-
tion f , which is a contradiction of the assumption that f
is a one way function. Structurally, this results bears some
similarity to those of [3].

3. Value Functions

Before proceeding further, it is necessary to formulate
precisely what is meant by the “information content” of the
(preimage or image) of a function. We formulate this no-
tion in terms of a set of questions that can be asked (e.g.,
predicates) and the accuracy of the responses (the fidelity).
Formally, suppose that E is an ensemble of values on some
domain (not necessarily the preimage D of the one way
function). A value function V is a collection of predicates
{bi : 0 ≤ i < B}. An evaluation of the value func-
tion over an ensemble E is the set of predicate outputs
{bi : e ∈ E, 0 ≤ i < B} together with a set of proba-
bilities {Fi : 0 ≤ i < B}, known as the fidelity of each
predicate. Informally, the fidelity of a particular predicate
evaluation is the probability that the output is correct. Note
that we assume that each predicate has access to the en-
tire ensemble of values, so that we can define the preimage
of the value function V to be the ensemble E. Given the
set of fidelities calculated over the entire set of predicates,
we can define the total fidelity F of V to be the product
of the individual fidelities Fi. By abuse of notation we can
then write V (E) = F indicating that V measures the in-
formation content of some aspect of the ensemble E with
aggregate fidelity F .

Given these definitions, we can next ask for the depen-
dency of F on E. Informally, we would like it to be the
case that if we increase the population of E this somehow
leads to more information, and that as a result the aggregate
fidelity (at least) does not decrease. Since V may not be a
deterministic function, it may be too strong a requirement
that V be strictly ordered on the cardinality of E, however.
Therefore, we define a less restrictive notion, that of a weak



ordering. We say that a value function is weakly ordered
if two conditions are satisfied. The first condition is the
threshold condition, which states that

‖E‖ ≥ ‖Emin‖

namely that we have at least some minimum population.
The second condition is the weak ordering condition, which
states that if F1 ≤ 1 and F2 ≤ 1, and r = F2/F1 > 1, then
there exists some r′ such that

‖E′‖ > r′‖E‖ ⇒ V (E′) > rV (E)

for all ensembles E and E′. Roughly speaking, the more
accurate we want our answer to be, the larger a population
we must have. Henceforth in this paper we will always as-
sume that any value function V is weakly increasing.

We observe immediately that if V is weakly increasing,
and therefore weakly ordered, we can take the contraposi-
tive of the statement above; namely, if r < 1 (a decrease
in information content) then we can find some r′ < 1 such
that

V (E′) < rV (E)⇒ ‖E′‖ < r′‖E‖

so long as the threshold condition is also satisfied.
We can now use these definitions to define what we mean

by the “loss of information” due to the application of an ap-
proximation function as described in the first section. Let
f by a function acting on the preimage of a one way func-
tion H , let g by a function on the image of that one way
function, and let p be a correlation function of f and g. Let
Ef be an ensemble of values in the image of f and Eg be
an ensemble of values in the image of g. Let V be a value
function that acts on both Ef and Eg . Then we define the
differential value of the two ensembles as:

DV (Ef , Eg) = V (Eg)/V (Ef )

We assume throughout that both Ef and Eg satisfy the
threshold condition and also that the pathological case
V (E) = 0 is not realized. In a heuristic sense, DV is a
measure of the amount of information lost due to applying
the one way function; this is the baseline against which we
will now measure further losses due to the approximation
process. Given a correlation function p, rather than looking
at the output obtained directly from g, consider instead the
output obtained from the functional composition of p and f .
In this case we define the p-differential value as:

DV (p,Ef , Eg) = V (Ep)/V (Ef )

where we have used Ep to denote the ensemble of val-
ues {p(f(z)) : f(z) ∈ Ef}. It may be the case that
DV (p,Ef , Eg) approximates DV (Ef , Eg) at least as well
as p(f(x)) approximates g(H(x)). We would therefore like

to ask how much does one need to increase the source pop-
ulation ‖Ef‖ in order to insure that the p-differential value
is at least as large as the differential value. We define the
information loss due to p as:

IL(p) = DV (p,Ef , Eg)/DV (Ef , Eg)

This is an instantaneous measurement in that it depends on
the populations Ef and Eg . Therefore, we also define the
population multiplier to be the value k such that for all Ef

and Eg and for any ε we have that

‖Ep‖ > k‖Ef‖ ⇒ IL(p) ≥ (1− ε)

Thus, if we insure that the target population Ep is at least
k times as large as the source population Ef then almost
no information is lost. Using the theorem above we have
immediately

Corollary 1 If f is a one way function then k = 1.

This corollary expresses the fact that if f is itself a one way
function then sufficient entropy is lost in making measure-
ments f(x) that it is possible to obtain (almost) perfect cor-
relation with the measurements g(H(x)), e.g. that p(x) can
be any deterministic polynomially invertible function, in-
cluding the identity function.

4. Conclusion

Why does this matter? The theorem and is corollary
show that we can offer privacy and security for stored and
transmitted text while still permitting statistical analysis of
content. If x is an element of the ensemble E, we can pre-
vent identification of x via a one way function, such as a
hash function, while preserving the properties associated
with x and E. Although x will be unrecoverable via any
polynomial time algorithm, its properties are still measur-
able.
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