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Social influence maximization models aim to identify the 
smallest number of influential individuals (seed nodes) that 
can maximize the diffusion of information or behaviours 
through a social network. However, while empirical experi-
mental evidence has shown that network assortativity and the 
joint distribution of influence and susceptibility are important 
mechanisms shaping social influence, most current influence 
maximization models do not incorporate these features. Here, 
we specify a class of empirically motivated influence models 
and study their implications for influence maximization in six 
synthetic and six real social networks of varying sizes and 
structures. We find that ignoring assortativity and the joint 
distribution of influence and susceptibility leads traditional 
models to underestimate influence propagation by 21.7% on 
average, for a fixed seed set size. The traditional models and 
the empirical types that we specify here also identify substan-
tially different seed sets, with only 19.8% overlap between 
them. The optimal seeds chosen under empirical influence 
models are relatively less well-connected and less central 
nodes, and they have more cohesive, embedded ties with their 
contacts. Hence, empirically motivated influence models have 
the potential to identify more realistic sets of key influencers 
in a social network and inform intervention designs that dis-
seminate information or change attitudes and behaviours.

Recent debates about the use of empirical data in micro-tar-
geting campaigns designed to change opinions and behaviours 
in social media networks have focused almost exclusively on the 
effectiveness of these interventions in changing the opinions and 
behaviours of the targeted groups. There is, however, a potentially 
broader application of such empirical data to the optimization of the 
spread of those behaviours in a social network through influence 
maximization. In fact, the social ‘influence maximization’ prob-
lem lies at the heart of networks research in multiple disciplines, 
including physics1, economics2, computer science3,4 and sociology5. 
This elegant problem is essential to our scientific understanding of 
information diffusion6, cascade dynamics7, behavioural contagion8 
and concrete policy decisions in applied fields such as marketing9,10, 
contagion management11, immunization12,13 and public health14.

Given a network graph, a seeding budget, an influence model 
(which governs influence diffusion over the network) and an opti-
mization framework (to select the seed nodes), the goal of social 
influence maximization is to choose a set of seeds (individuals in 
the network) to receive an encouragement to adopt a product or 
behaviour (for example, an advertisement or incentive) such that 
the ‘influence’ of the seeds spreads the behaviour to the maximum 
number of nodes in the network. The problem was first formulated 
as a probabilistic model of interaction with heuristics for choosing 
the best seeds9 and subsequently framed as a discrete optimization 
problem3,4. Although social influence maximization is multifaceted,  

some dimensions of the problem have attracted more research 
interest than others.

The optimization framework has received the most attention, as 
researchers developed efficient discrete optimization strategies for 
choosing the seed set. The optimization is known to be NP-hard15 
and a greedy algorithm that achieves a 1 −  1/e approximation has 
been proposed previously3. Since then, multiple refinements have 
improved the computational efficiency of the procedure16–18 and 
have implemented optimization in software that substantially 
reduces the run time of the original greedy algorithm19–21. However, 
the influence model, which specifies the influence diffusion process 
in the network (that is, how the behaviour of a set of seed nodes at 
time t diffuses to other nodes at time t +  n), has received much less 
attention, except in some recent studies that describe algorithms 
for robust influence maximization in the presence of uncertainty in 
edge propagation probabilities or the influence functions22,23. Two 
broad classes of influence models exist in the current literature: 
threshold models and cascade models.

Threshold models assume that there is a threshold value (or a set 
of threshold values) at which nodes adopt the product or behaviour. 
In the simplest of these models, the linear threshold (LT) model24, 
each node v has a latent threshold θv and for every neighbour 
u ∈  N(v) (where N(v) is the set of neighbours in the graph) (u, v) 
has a non-negative weight wuv such that ∑ ≤∈ w 1u N v uv( ) . Given the 
thresholds and an initial set of active nodes, the process unfolds 
deterministically in discrete time steps. At time t, an inactive  
node v becomes active if θ∑ ≥∈ wu A v uv v( )  where A(v) is the set of 
active neighbours of v up to time-step t −  1. Once activated, a node 
stays active and the process terminates when no more activations 
are possible.

Cascade models were first introduced in the marketing con-
text25,26. In the simplest of these models, the independent cascade 
(IC) model, each edge (u, v) in the graph is associated with a prob-
ability puv known as the influence probability. Given the influ-
ence probabilities and an initial set of active nodes, as each node 
u becomes active, it is given a single chance to activate each inac-
tive neighbour v independently with probability puv. As in the case 
of the LT model, the process unfolds in discrete time and if u has 
multiple newly activated neighbours, their attempts are modelled 
sequentially in an arbitrary order. The temporal dynamics of the 
spread of influence can be modelled in discrete or continuous time. 
Traditionally, the discrete time setting has received the most atten-
tion, mainly owing to convenience, although recently some models 
have proposed continuous time dynamics27.

These current approaches to influence modelling entrench 
the view that a node’s influence can be characterized either by its 
network properties or by a transmission parameter that is speci-
fied as constant, random or drawn from a uniform distribution.  
The weight parameters in the LT model (wuv) and the influence 
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parameters in the IC model (puv) are free parameters that need to 
be fixed. Typically, the wuv parameter in the LT model is chosen 
as inversely proportional to the in-degree of the node and the puv 
parameter in the IC model is assumed to be a constant uniform 
edge propagation probability of 0.01 or 0.13,4. Although the previous 
theory3 is general and simply assumes an unknown parameter puv 
between 0 and 1, the experiments in the previous study3 and in most 
of the subsequent studies fix puv to 0.01 or 0.1. Even the most recent 
work, which maps influence maximization to optimal percolation (a 
variant of the LT model in which node thresholds are fixed propor-
tional to their degree and all the edge weights are 1), relies on net-
work structure, rather than estimates of the distribution of influence 
and susceptibility in real networks, to govern diffusion dynamics28.

Unfortunately, this is not how social influence diffuses in real 
networks. Empirical evidence suggests that these influence models 
are misspecified in three important ways. First, real networks are 
assortative29. However, despite evidence showing that assortativity 
substantially impacts diffusion dynamics in networks30, even the 
most recent influence models used for influence maximization (for 
example, ref. 18) do not currently model the assortativity of influ-
ence or how influence is distributed in the network. Second, most 
of the recent empirical studies on the identification of peer effects31, 
homophily32 and social influence33 support modelling of diffusion 
using a non-uniform joint distribution of influence and susceptibil-
ity34. Despite this focus on ‘influential people’ and ‘susceptible people’ 
in the empirical literature35, current influence maximization models 
do not separate influence from susceptibility or specify their joint 

distribution. Third, to be realistic, influence models must accom-
modate heterogeneity in influence and susceptibility. Some LT and 
IC models incorporate heterogeneity in influence and some do not. 
For instance, when thresholds (in the LT model) or weights (in the 
IC model) are distributed uniformly in a random manner, some het-
erogeneity is incorporated into the influence model specification. 
However, when these values are specified as constant, influence 
is assumed to be homogenous; and when the values are specified 
as proportional to degree, the heterogeneity in influence depends 
on the heterogeneity of the degree distribution. Incorporating het-
erogeneity improves current models, but our analysis shows that it 
is not enough to choose ‘optimal’ seeds, where optimal is defined 
under an empirical model of the joint distribution of influence and 
susceptibility in the network. In the end, all three sources of mis-
specification (the joint distribution of influence and susceptibility, 
the assortativity of influence and susceptibility and heterogeneity) 
have important roles in differentiating empirical influence models 
from the current models used in influence maximization.

The degree to which influence maximization applies to real 
policy decisions, such as which customers to market to or which 
people to immunize, depends almost entirely on whether the influ-
ence model is correctly specified. If influence models are realistic 
and reflect our empirical understanding of influence diffusion, then 
social influence maximization will produce realistic optimal seed 
sets that create behavioural diffusion. If influence models are mis-
specified, however, influence maximization will produce unrealistic 
and suboptimal seed sets.
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Fig. 1 | Parameterization of influence and susceptibility and implications for seed set selection. The same network is displayed, parameterized by four 
different models of the distribution of influence and susceptibility over nodes, characterized by four types of nodes: low influence and low susceptibility 
nodes, high influence and low susceptibility nodes, high influence and high susceptibility nodes and low influence and high susceptibility nodes.  
The optimal seed nodes selected under each model are outlined in green. a, Baseline IC and LT models for which propagation properties are specified 
as constant (top) and the inverse of node degree (bottom), respectively. b, Baseline IC and LT models for which propagation properties are specified 
according to the assortative influence, assortative susceptibility, substitute influence–susceptibility (AAS) model. c–e, The same information as in 
b, but for the assortative influence, disassortative susceptibility, substitute influence–susceptibility (ADS; c), disassortative influence, disassortative 
susceptibility, substitute influence–susceptibility (DDS; d) and disassortative influence, assortative susceptibility, substitute influence–susceptibility 
(DAS; e) empirical influence models. Distributions of the frequency of the four types of nodes with different influence and susceptibility characterizations 
are displayed underneath each graph or model. Seed sets differ substantially across different parameterizations of the graph, implying vastly different 
influence maximization results for the different models of influence and susceptibility.
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Here, we specify a class of empirical influence models and study 
their implications for social influence maximization in six syn-
thetic and six real social networks of varying sizes and structures. 
We quantify the extent to which influence model misspecification 
produces suboptimal seed sets and inaccurate projections of the 
amount of influence created by optimally chosen policies. The key 
insights derived from this exercise stem from the two main mod-
elling contributions in our specifications. First, by distinguishing 
influence and susceptibility, we allow for the possibility that influ-
ential people interact with susceptible people as well as with those 
who are less susceptible to influence. Rather than specifying some-
one’s average influence as a constant transmission parameter that 
governs their ability to influence everyone they know in the same 
way, in our specifications someone’s influence varies systemati-
cally across their contacts and influential people are more effective 
at spreading influence to susceptible people than to those who are 
less susceptible. Second, by specifying the joint distribution of influ-
ence and susceptibility together, we allow for assortativity in influ-
ence and susceptibility in the network and enable investigations of 
how the distribution of influence and susceptibility over nodes in 
the network affects diffusion dynamics and influence maximiza-
tion. In this way, we ask how diffusion and thus the results of influ-
ence maximization change when influential people are surrounded 
by susceptible people, as opposed to, for example, when influential 
people and susceptible people cluster together, but not with each 
other. Figure 1 shows the parameterization of our empirical influ-
ence models and their impact on seed selection.

The results show that incorporating more realistic diffusion 
dynamics into the heart of the influence maximization problem 
leads to vastly different results. In particular, current approaches 
underestimate influence propagation by 21.7% on average, for a fixed 
seed set size. Perhaps more importantly, the optimal seed sets under 
empirical influence models only overlap with optimal seed sets 
under traditional models by 19.8% on average, indicating that influ-
ence maximization procedures under unrealistic influence models 
rarely select optimal seeds. Moreover, the optimal seeds chosen 
under empirical influence models are relatively less well-connected  

(as measured by their degree), are relatively less central nodes and 
have more cohesive, embedded ties with their contacts, compared 
to the seeds chosen by baseline methods from the extant influence 
maximization literature.

These results indicate qualitatively different policy prescriptions 
from influence maximization. Not only are the optimal seed nodes 
different under empirical influence models, they are systematically 
different in ways that enable effective adjustments to influence max-
imization heuristics as well as to our understanding of what charac-
teristics drive influence maximization in networks.

All variations of the empirical influence model spread substan-
tially more influence than the baseline models (Fig. 2) and seed 
node selection using models based on the latest empirical evidence 
substantially outperform seed node selection based on current 
influence maximization models in all twelve of the graph struc-
tures that we studied (representative examples are given in the main 
manuscript, and the complete set of influence maximization results 
are presented in the Supplementary InformationInformation). We 
compare our seed set selections to the inverse degree, random and 
constant influence model specifications in order to conservatively 
estimate the suboptimality of current models, as these models repre-
sent the current state-of-the-art models of influence maximization. 
The constant baseline model assigns edge propagation probabilities 
based on the heuristic of picking a fixed number of 0.1 for all the 
edges for the IC model. For the LT model, the same heuristic of 
picking a fixed number reduces to choosing the edge weights based 
on the inverse of the in-degree of the node, because the incoming 
weights of each node sum to 1. So, even in the case of the LT model, 
all the edge weights are constant, however, they are all equal to the 
inverse of the in-degree of the node.

The results in Fig. 2 show that the correct empirical influence 
model performs better than the baseline models in all cases and 
that, in many cases, the suboptimality of the seed sets chosen by 
baseline models is severe. The fact that the random baseline model 
performs comparably to the constant and inverse degree baseline 
models and substantially worse than the correct empirical influence 
propagation model highlights that the superior performance of the 
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Fig. 2 | influence diffusion under identical influence maximization regimes with different influence models. The total influence sizes (number of adopter 
nodes) conditional on the seed set size (the number of initial seed nodes specified by influence maximization) under different influence models (AAS, ADS 
and DDS) for the IC and LT models in a synthetic small world network (left) and the arXiv high-energy physics collaboration network (right). The total 
number of adopters is generated by applying influence maximization on the graph given a true underlying influence model (for example, AAS and IC) and 
then using either that model or the baseline models (inverse degree, random or constant) to maximize influence. The difference in total adopters achieved 
under different models represents the suboptimality of using a baseline model of influence to choose seed nodes when the true influence model is one of 
the empirical influence models that we specify based on recent empirical evidence.
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correct model is not only because of the randomness it inserts into 
the edge propagation thresholds, but also because of the imposition 
of the correct correlation structure of edge propagation thresholds 
that leads to the selection of higher quality seed nodes and therefore 
greater influence diffusion.

The results in Fig. 3 show that empirical influence models not 
only spread substantially more influence than the baseline mod-
els, but also spread more influence than other empirical influence 
models. This highlights the importance of specifying the correct 
influence model and thus the correlational structure of the edge 
propagation thresholds. In other words, misspecification of the cor-
relational structure of the edge propagation thresholds also leads 
to suboptimal influence spread. It is not surprising that the cor-
rect model outperforms the others. What is surprising, however, is 
the magnitude and economic significance of the misspecification 
error. The results show that incorrect specification of the correla-
tion structure of edge propagation thresholds can on average lead 
to 21.7% (95% confidence interval =  19.2–24.2) lower influence for 
both the IC and LT models compared to the random and the heu-
ristic baselines. The random baseline underestimates influence by 
34.0% (95% confidence interval =  29.3–38.7) on average for the LT 
model and by 17.2% (95% confidence interval =  11.5–22.9) for the 
IC model. The corresponding numbers for the influence underesti-
mation by the heuristic baseline for the LT model are 23.1% (95% 
confidence interval =  19.0–27.3) and 12.5% (95% confidence inter-
val =  8.2–16.8) on average for the IC model.

Next, we compare the structural properties of the seeds chosen by 
the baseline models and the empirical influence models. Figure 4a  
shows the mean fractional overlap in the seed sets selected by the 
optimization under different influence models. As can be seen, the 
overlap in the seed sets is usually quite low (< 25%), demonstrat-
ing that misspecification errors lead to suboptimal seed selection. 
The mean overlap between the seeds chosen by empirical influence 
models compared to the random and heuristic baselines for both 
the IC and LT models is 19.8% (95% confidence interval =  17.5–
22.1). The seed overlap with the random baseline was 11% (95% 

confidence interval =  8.7–12.8) for the IC model and 21% (95% 
confidence interval =  16.6–25.5) for the LT model. For the IC 
model, 89% of the comparisons have an overlap of 25% or less and 
for the LT model there is an overlap of 30% or less in 61% of the 
comparisons. Similarly, when compared to the heuristic baseline 
method (constant for IC and inverse degree for LT), the mean over-
lap is 15.4% (95% confidence interval =  12.6–18.2) for the IC model 
and 32% (95% confidence interval =  27.1–36.9) for the LT model.  
In comparison to heuristic methods, 81% of the comparisons had 
an overlap of 27% or less and 59% of the comparisons had an over-
lap of 40% or less.

In some cases, for the LT model, the overlap is higher than 
average. The higher overlap for the LT model is explained by the 
fact that it has two parameters, edge propagation probabilities and 
node-specific thresholds. Our empirical influence models change 
the edge propagation probabilities based on the eight variants that 
we describe, but do not interfere with the node-specific thresholds 
(specified U(0, 1)), in order to preserve sub-modularity. As influ-
ence transmission is determined by both parameters, only one of 
which is changing, we observe less difference between these models 
and the baseline results. However, even in cases with higher seed 
set overlaps, the difference in seed sets is substantial enough to cre-
ate an economically important difference in the influence spread 
achieved by the seed nodes chosen by the correct empirical influ-
ence model compared to the LT model (as can be seen in Fig. 3).

Although the baseline methods do not choose the same seeds as 
the empirical influence models, they may be choosing structurally 
equivalent seeds, that is seeds that display similar structural net-
work characteristics and influence and susceptibility parameters. 
We therefore compare multiple structural properties of seeds nodes 
chosen under different influence models, including their degree, 
Burt’s constraint36 and the Gini coefficient of their influence and 
susceptibility parameters (Fig. 4b–e).

The seed sets chosen by empirical influence models have lower 
degrees and higher Burt’s constraints on average, compared to the 
heuristic baselines. This indicates that the structural characteristics 
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Fig. 3 | influence diffusion under identical influence maximization regimes with different influence models. The total influence sizes (number of  
adopter nodes) conditional on the seed set size (the number of initial seed nodes specified by influence maximization) under different influence models 
(AAS, ADS and DDS) for the IC and LT models in a synthetic small world network (left) and the arXiv high-energy physics collaboration network (right). 
The total number of adopters is generated by applying influence maximization on the graph given a true underlying influence model (for example, AAS and 
IC) and then using either that model or one of the other empirical influence models (for example, AAS, ADS or DDS) to maximize influence. The difference 
in total adopters achieved under different models represents the suboptimality of using a different model of influence to choose seed nodes when the true 
influence model is the empirical influence model that we specify based on recent empirical evidence. The analysis in this figure is the same as in Fig. 2, 
with the only difference being that here we compare the true influence model against other incorrect empirical influence models, rather than against the 
heuristic baselines (inverse degree, random or constant).
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that define optimal seeds under different influence models are very 
different. Not only are the seeds chosen by empirical influence mod-
els less well-connected than those chosen by the heuristic methods, 
but they also have more cohesive networks or a greater density of 
connections among their contacts. Assuming that the cost of con-
vincing a node to broadcast the advertiser’s message is proportional 
to its degree, this finding suggests that seeding nodes that are less 
well-connected, but that have cohesive, embedded ties with their 
contacts are more likely to maximize influence diffusion, support-
ing similar findings that have been described previously35. In small 
world networks, we also see lower Gini coefficients of susceptibil-
ity parameters in the AAS models, because these networks have 
distinct clusters with dense connections within clusters and few 

connections across clusters. The assortative distribution of suscep-
tibility in these networks creates greater similarity within clusters 
and thus lower variability in susceptibility across nodes in a given 
neighbourhood. The degree and Burt’s constraint distributions of 
optimal seeds under empirical influence models are similar to the 
random baseline model, but actual seeds that are chosen and the 
implied influence diffusion are very different. This implies that the 
results are not only driven by the introduction of heterogeneity in 
propagation thresholds, but also by the specification of the correct 
correlation structure of those propagation thresholds. It is natural to  
ask how the choice of opinion dynamics models impacts the seed 
sets and influence spread. Here, we used the IC and LT models to 
model opinion dynamics, because they are the most widely studied 
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Fig. 4 | overlap among and structural differences between seed sets under different influence models. Overlap among and structural differences 
between seed sets chosen by influence maximization under different influence models conditional on the seed set size (the number of initial seed nodes 
specified by influence maximization) under different influence models (AAS, ADS and DDS) for the IC and LT models in a synthetic small world network 
(top) and the arXiv high-energy physics collaboration network (bottom). a, Mean fractional overlap (averaged over 10 random draws) between the seed 
sets chosen by the various empirical influence models (AAS, ADS or DDS) and the baseline models (inverse degree, random or constant). For example, 
the number 0.06 in the top row indicates that only 6% of the seeds were shown to be in common between the constant and the random baseline models 
for the IC model for the synthetic small world dataset. b,c, The various structural properties of the chosen seed sets (degree (b) and Burt’s constraint 
(c)). The horizontal black line shows the mean degree (d) and Burt’s constraint (c) of the entire network. d,e, The Gini coefficient of the influence (d) and 
susceptibility (e) parameters of a seed node and the sub-network induced by its friends-of-friends. The horizontal black line shows the mean influence (d) 
and susceptibility (e) Gini for the entire network for the random baseline model.
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models in the broad class of cascade- and threshold-based models. 
Our findings on the relative performance of the various approaches 
are consistent across both the IC and LT models, although the abso-
lute performance differs across the IC and LT models as well as across 
the different datasets, as expected. We hypothesize that our results 
will hold for other models in the cascade- and threshold-based class 
of models, because, at a high level, their mechanics are similar.

Recent debates about the usefulness of individual-level psycho-
logical and behavioural data (such as the introversion or extraver-
sion of individuals) in micro-targeting campaigns have focused 
almost exclusively on the effectiveness of such campaigns in chang-
ing the opinions or behaviours of the targeted individuals. Our 
work, however, implies that the use of such empirical data (which 
may be correlated with individuals’ influence and susceptibility) in 
network seeding could also impact the spread of such behaviours 
from the targeted individual to their friends, thereby affecting the 
overall spread of the behaviours and opinions in society.

The influence models that are currently used for influence 
maximization do not reflect the most recent empirical evidence 
on how influence diffuses in human social networks. We there-
fore specified more realistic empirical influence models across 
twelve commonly used networks in the literature to study how 
influence model misspecification affects influence diffusion 
and the optimal seed nodes chosen by influence maximization. 
The results of our analysis show that ignoring assortativity and 
the joint distribution of influence and susceptibility leads tradi-
tional models to underestimate influence propagation by 21.7% 
on average for a fixed seed set size. The superior performance of 
empirical influence models cannot be explained solely by either 
the incorporation of heterogeneity into the influence distribution 
in the network or the specification of assortativity in propaga-
tion thresholds. Specifying the correct functional forms of het-
erogeneity and assortativity—whether, for example, influence 
and susceptibility are assortative or disassortative—is essential to 
achieving optimal seed selection.

Empirical influence models select optimal nodes that have sub-
stantially lower degrees and higher Burt’s constraints (or ego net-
work density) compared to heuristic baseline models. However, they 
have similar degree, centrality and Burt’s constraint distributions 
compared to the random baseline model, suggesting that structural 
properties alone do not characterize the differences between the 
chosen seed sets. This highlights the importance of empirically esti-
mating the correct latent influence and susceptibility parameters of 
nodes in a given network in order to choose the optimal seed sets 
and indicates that access to behavioural and psychological data is 
likely to improve influence maximization beyond models that only 
consider network structure.

Recent empirical advances in using new observational tech-
niques33 or randomized experiments37–41 to identify influence and 
susceptibility in networks provide new opportunities for specifying 
more accurate, contextual influence models when using influence 
maximization to identify optimal targets of public policy interven-
tions or business advertising. Our results suggest that the growing 
body of research on influence maximization needs to incorporate 
results and insight from the empirical literature on influence identi-
fication in order to become more realistic and practically applicable. 
Furthermore, our empirical models of the non-uniform joint dis-
tribution of influence and susceptibility, suggest that social influ-
ence is an edge property rather than a node (or individual-specific) 
property. Individuals experience heterogeneity in their ability to 
persuade their friends or neighbours. An interesting direction for 
future research, therefore, is to investigate more realistic influence 
model specifications, which incorporate context-specific empirical 
evidence on assortativity and the joint distribution of influence and 
susceptibility in the specific networks for which influence is being 
maximized.

methods
Model specification. Current state-of-the-art influence maximization approaches 
use simple models of edge propagation probabilities specified as constant, 
random or inversely proportional to a node’s in-degree. Here we assume that an 
individual’s influence and susceptibility are distinct and individually specified. 
Given a graph G(V, E) connecting a set of V nodes and E edges, such that |V| =  n, 
in a binary adjacency matrix which indicates the presence or absence of edges 
in the graph, we associate two p-dimensional parameters, representing influence 
Λ λ λ λ= …{ , , , }i i i ip1 2

 and susceptibility Θ θ θ θ= …{ , , , }i i i ip1 2
, with each node 

and construct the edge propagation probability for an edge eij pointing from 
node i to node j as the normalized inner-product of influence and susceptibility 

Λ Θ

Λ Θ∥ ∥∥ ∥

⊤
i j

i j
. Each dimension of influence and susceptibility lies between 0 and 1 and 

could, for instance, represent the influence and susceptibility of that individual 
for a specific behaviour. Note that in theory, the influence and susceptibility 
parameters are generally defined as p-dimensional vectors, whereas we assume 
for our analysis that they are scalars. While we hope that future studies will 
embrace the dimensionality of influence and susceptibility and explore how 
variation in influence and susceptibility across behaviours affects influence 
maximization, such analysis is beyond the scope of the current work. Assuming 
nodes i and j are connected and that node i has already been activated at time 
t −  1, then propagation at time t occurs according to a simple rule: flip a coin with 
a probability that is equal to the normalized inner-product of the influence of i 
and the susceptibility to influence of j (that is Λ Θ

Λ Θ∥ ∥∥ ∥

⊤
i j

i j
) such that each activated 

node gets only one chance to activate each of their non-activated neighbours. This 
gives rise to non-uniform edge propagation probabilities that are a function of the 
correlation and assortativity patterns between an individual’s own influence and 
susceptibility and those of their neighbours.

We consider eight specifications of the empirical influence model that vary 
in (1) the extent to which influence is assortative or disassortative (governing the 
degree to which influential people associate or dissociate with each other); (2) the 
extent to which susceptibility is assortative or disassortative (governing the degree 
to which susceptible people associate or dissociate with each other); and (3) the 
correlation between individuals’ influence and their own susceptibility (governing 
the degree to which influential people tend to be susceptible to influence). The 
eight variants of the empirical influence models that we specify are as follows.

(1)  Assortative influence, assortative susceptibility, complement influence–
susceptibility (AAC): ρ ρ ρ> > > ∀ ∈Λ Λ Θ Θ Λ Θ∈ ∈

i V0, 0, 0
i j N i i j N i i i( ) ( )

(2)  Assortative influence, assortative susceptibility, substitute influence–
susceptibility (AAS): ρ ρ ρ> > ≤ ∀ ∈Λ Λ Θ Θ Λ Θ∈ ∈

i V0, 0, 0
i j N i i j N i i i( ) ( )

(3)  Assortative influence, disassortative susceptibility, complement influence–
susceptibility (ADC): ρ ρ ρ> ≤ > ∀ ∈Λ Λ Θ Θ Λ Θ∈ ∈

i V0, 0, 0
i j N i i j N i i i( ) ( )

(4)  Assortative influence, disassortative susceptibility, substitute influence–
susceptibility (ADS): ρ ρ ρ> ≤ ≤ ∀ ∈Λ Λ Θ Θ Λ Θ∈ ∈

i V0, 0, 0
i j N i i j N i i i( ) ( )

(5)  Disassortative influence, assortative susceptibility, complement influence–
susceptibility (DAC): ρ ρ ρ≤ > > ∀ ∈Λ Λ Θ Θ Λ Θ∈ ∈

i V0, 0, 0
i j N i i j N i i i( ) ( )

(6)  Disassortative influence, assortative susceptibility, substitute influence–
susceptibility (DAS): ρ ρ ρ≤ > ≤ ∀ ∈Λ Λ Θ Θ Λ Θ∈ ∈

i V0, 0, 0
i j N i i j N i i i( ) ( )

(7)  Disassortative influence, disassortative susceptibility, complement influence–
susceptibility (DDC): ρ ρ ρ≤ ≤ > ∀ ∈Λ Λ Θ Θ Λ Θ∈ ∈

i V0, 0, 0
i j N i i j N i i i( ) ( )

(8)  Disassortative influence, disassortative susceptibility, substitute influence–
susceptibility (DDS): ρ ρ ρ≤ ≤ ≤ ∀ ∈Λ Λ Θ Θ Λ Θ∈ ∈

i V0, 0, 0
i j N i i j N i i i( ) ( )

where ρxy denotes the Pearson’s correlation between x and y and N(i) denotes the 
set of neighbours of the node i. For example, consider the empirical influence 
model specification ADC, which entails a positive correlation between a node’s 
influence parameter and their neighbours’ influence parameters (assortative); 
a negative correlation between a node’s susceptibility parameter and their 
neighbours’ susceptibility parameters (disassortative); and a positive correlation 
between their own influence and susceptibility parameters (complementarity). 
Note that by assortative/disassortative we mean influence or susceptibility are 
assortative or disassortative, but our framework could be used in future work to 
denote assortativity or disassortativity in behaviours or ‘traits’ more generally.

We then quantify the impact of the different correlation and assortativity 
assumptions in these eight specifications on the outcomes of influence 
maximization, including the final extent of influence diffusion under empirical 
influence models compared to current baseline models and the optimal seed 
sets chosen to maximize influence diffusion under empirical influence models 
compared to current baseline models (including the network structural differences 
between the seed sets). We begin with basic IC and LT models into which we 
incorporate empirically verified influence propagation parameters. We maintain 
all of the standard assumptions of influence maximization, including greedy 
optimization, the size of the seed-set k and discrete time dynamics. We do this to 
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distinguish our contribution from prior work and to ensure that no confounding or 
co-varying factors can explain our results.

Graph generation and parameterization. Influence models run on parameterized 
networks with known structure and distributions of influence and susceptibility over 
nodes. So, we generated synthetic graphs (small world and preferential attachment), 
collected data on commonly used empirical graphs from the influence maximization 
literature (for example, collaboration or citation graphs) and performed correlated 
label propagation on these real and synthetic graphs to generate the influence and 
susceptibility parameters satisfying the eight empirical influence models described 
above (see Supplementary Information for details about the algorithm).

The iterative graph labelling procedure extends previously published work42 
and performs an initial binary labelling of the graph corresponding to ‘high’ 
and ‘low’ types for both influence and susceptibility. We generate real values for 
influence and susceptibility by conditioning on node type (that is, high or low) and 
then drawing samples from two well-separated Beta distributions, for the influence 
and susceptibility parameters (see Supplementary Information for details). 
Attributed graph models43 are another way of generating graphs with correlated 
attributes (influence and susceptibility). However, unlike our setting, they generate 
both graphs and attributes. As a robustness check, the Supplementary Information 
contains influence maximization results for a setting in which both the graph 
and the attributes are generated using attributed graph models. The conclusions 
of the work do not change under this parameterization. Once we established the 
influence and susceptibility labels, we defined edge propagation probabilities 
as Λ Θ

Λ Θ∥ ∥∥ ∥

⊤
i j

i j
. The node threshold parameter in the LT model is assumed to be 

distributed U(0, 1) to preserve the sub-modularity of the influence maximization 
procedure. The proof of the sub-modularity of our empirical influence propagation 
specifications, which incorporate empirical evidence into IC and LT models, 
follows previously published studies3,4 and is presented in the Supplementary 
Information. Our labelling does not alter the structure of the graphs in any way.  
It simply labels nodes with influence and susceptibility parameters. In the case of 
the IC model, the constant baseline model might have more (or less) influence 
spread than our eight models of empirical influence maximization just by 
virtue of having more (or less) probability mass on its edges, so we ensure, via 
normalization, that the total sum of edge weights is the same across all the graphs 
and that the difference in influence diffusion across models emanates only from 
the way in which that fixed probability mass is distributed across the network. We 
do not perform this normalization for the LT model, because it ensures, by design, 
that each node’s incoming weights sum to 1.

Influence maximization and model comparison. Once we generated the graphs 
and the influence and susceptibility parameters, the influence maximization 
procedure is straightforward. We use the recently proposed two-phase influence 
maximization algorithm21 for influence maximization under the adapted IC and LT 
models. The number of seeds is set to 100 and the epsilon parameter to 0.1 as has 
previously been suggested21. We compare our empirical influence maximization 
models with three sets of baseline models that are commonly used in the influence 
maximization literature3,16,17: (1) models that assume randomly distributed 
influence and susceptibility parameters; (2) models that assume a constant edge 
propagation probability of 0.1 (called constant) for the IC model; and (3) models 
that assume an edge propagation probability inversely proportional to the in-
degree of the node (called inverse degree) for the LT model.

Code availability. Code for all the models and analyses is available at https://www.
dropbox.com/s/iimtqswiesl4skd/inf-max-data-code-release.zip?dl= 0.

Data availability. The data that support the findings of this study are available at 
https://www.dropbox.com/s/iimtqswiesl4skd/inf-max-data-code-release.zip?dl= 0.
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